
www.manaraa.com

Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

2-14-2017 

Exploring algorithms to recognize similar board states in Arimaa Exploring algorithms to recognize similar board states in Arimaa 

Malik Khaleeque Ahmed 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Ahmed, Malik Khaleeque, "Exploring algorithms to recognize similar board states in Arimaa" (2017). 
Theses and Dissertations. 2360. 
https://rdw.rowan.edu/etd/2360 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=rdw.rowan.edu%2Fetd%2F2360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2360?utm_source=rdw.rowan.edu%2Fetd%2F2360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


www.manaraa.com

 

 

 

 

 

EXPLORING ALGORITHMS TO RECOGNIZE SIMILAR BOARD STATES IN 

ARIMAA 

 

 

 

 

by 

Malik Khaleeque Ahmed 

 

 

 

A Thesis 

 

Submitted to the 

Department of Computer Science 

College of Science and Mathematics 

In partial fulfillment of the requirement 

For the degree of 

Master of Science in Computer Science 

at 

Rowan University 

December 16, 2016 

 

 

 

  

Thesis Chair: Dr. Nancy Lynn Tinkham 



www.manaraa.com

 

 

©  2016   Malik Khaleeque Ahmed 

 

 

 

 

 

 

 



www.manaraa.com

 

 

Dedication 

 For my daughter Haya, who was born almost three years after I started work on 

this thesis. Although pushing through and finishing this thesis has been difficult with the 

number of responsibilities I had taken upon myself after starting this work, I wanted to 

make sure I finished what I started so that it can be an example for her to turn to 

whenever life seems overwhelming - work hard, discipline yourself, and surround 

yourself with positive people who will help you accomplish everything you start, and 

there will be nothing beyond your grasp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iv 

 

Acknowledgments 

I would like to thank Dr. Tinkham for her support, her input, her time, and her 

patience throughout the work done on this thesis. All of those things, along with the 

many extensions filed, have helped me immensely. I would also like to acknowledge 

Patrick McKee, with whom I set out on this research journey, and all of the friends, 

coworkers, and faculty that encouraged, supported, prodded, and pushed me to finish. 

Out of those many friends and coworkers, I would especially like to thank Jim Wise for 

his continuous badgering and business card threats, as well as Shahid Akhter for his peer 

review and constant encouragement and support. 

Finally, I would like to thank my family - my parents for the love, support, and 

encouragement has always helped me through every phase of my life; my siblings for the 

distractions; and my wife Khadija and daughter Haya, both of whom came into my life 

after this adventure started, and with their love, understanding, patience, and 

encouragement helped me complete it. 

All of you have helped me accomplish this goal, and I am eternally grateful to 

have you all in my life.   

 

 

 

 

 



www.manaraa.com

v 

 

Abstract 

Malik Khaleeque Ahmed 

EXPLORING ALGORITHMS TO DETERMINE SIMILAR BOARD STATES 

IN ARIMAA 

2016 

Dr. Nancy Lynn Tinkham 

Master of Science in Computer Science 

 

The game of Arimaa was invented as a challenge to the field of game-

playing artificial intelligence, which had grown somewhat haughty after IBM’s 

supercomputer Deep Blue trounced world champion Kasparov at chess. Although 

Arimaa is simple enough for a child to learn and can be played with an ordinary 

chess set, existing game-playing algorithms and techniques have had a difficult time 

rising up to the challenge of defeating the world’s best human Arimaa players, 

mainly due to the game’s impressive branching factor. This thesis introduces and 

analyzes new algorithms and techniques that attempt to recognize similar board 

states based on relative piece strength in a concentrated area of the board. Using this 

data, game-playing programs would be able to recognize patterns in order to discern 

tactics and moves that could lead to victory or defeat in similar situations based on 

prior experience. 

 

 

 

 

 



www.manaraa.com

vi 

 

Table of Contents 

Abstract ................................................................................................................................v 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

Chapter 1: Arimaa Rules ......................................................................................................1 

1.1 Background ................................................................................................................1 

1.2 Gameplay ...................................................................................................................2 

1.3 Current Methods and Literature Review ....................................................................6 

1.4 Alpha Beta Search ......................................................................................................6 

1.5 Monte Carlo Tree Search ...........................................................................................7 

1.6 Other Unique Techniques...........................................................................................8 

Chapter 2: Our Approach ...................................................................................................10 

2.1 Piece Data Format ....................................................................................................11 

2.2 Partial Hash Matches ................................................................................................15 

2.3 Recognizing Similar Moves .....................................................................................17 

2.4 Examples of Transitions ...........................................................................................17 

2.5 Recognizing Features Using Piece Data ..................................................................19 

2.6 Examples of Known Patterns ...................................................................................19 

2.6.1 Frozen pieces .....................................................................................................19 

2.6.2 Immobilized pieces ............................................................................................22 

2.6.3 “Capturable” pieces. ..........................................................................................24 

2.6.4 Flash kidnapping................................................................................................25 

Chapter 3: Implementation ................................................................................................30 

 



www.manaraa.com

vii 

 

Table of Contents (Continued) 

3.1 Game Database .........................................................................................................30 

3.2 Knowledge Database ................................................................................................30 

3.3 Generating Best Move ..............................................................................................35 

Chapter 4: Results and Analysis ........................................................................................38 

4.1 Trends Per Radius ....................................................................................................38 

4.2 Trends During Gameplay .........................................................................................41 

4.3 Notable Examples ....................................................................................................46 

4.4 Average Move Grouping by Radius ........................................................................51 

Chapter 5: Improvements and Future Work ......................................................................55 

5.1 Scoring Heuristics ....................................................................................................55 

5.2 Recognize Tactics ....................................................................................................56 

5.3 Opening Moves ........................................................................................................56 

5.4 Piece Data Format Adjustments ...............................................................................58 

5.5 Optimal Radius Selection .........................................................................................60 

5.6 Integration with Alpha-Beta Pruning .......................................................................61 

5.7 Performance Optimizations ......................................................................................62 

Chapter 6: Conclusion........................................................................................................63 

References ..........................................................................................................................64 

Appendix: Move Groups Per Turn Per Radius ..................................................................66 

 

 

  



www.manaraa.com

viii 

 

List of Figures 

Figure Page 

Figure 1. Arimaa pieces listed in order from strongest (elephant) to weakest (rabbit) 

with their movement directions and equivalent chess pieces. ..............................3 

Figure 2. Algebraic notation example. .................................................................................4 

Figure 3. Position with spaces labeled with distance from the rabbit on e5 ......................13 

Figure 4. Example of two board states from the Arimaa games database where two 

entirely different pieces have the same piece data hash up to radius 4...............16 

Figure 5. Board state before win-in-two move. .................................................................17 

Figure 6. Board state after win-in-two move. ....................................................................18 

Figure 7. Board state with frozen silver horse. ..................................................................20 

Figure 8. Example of elephant blockade. ...........................................................................22 

Figure 9. Example of the “flash kidnapping” strategy over multiple turns. ......................26 

Figure 10. Directed acyclic word graph describing the flash kidnapping strategy. ...........28 

Figure 11. Knowledge base recursive trie tree...................................................................31 

Figure 12. Pseudocode to persist the knowledge base's recursive trie tree. .......................33 

Figure 13. Percentage of wins and losses for each radius. .................................................39 

Figure 14. Wins broken down by the side that the bot played as. .....................................39 

Figure 15. Average number of times the knowledge database was used in a game 

for a given radius. ............................................................................................40 

Figure 16. "Forced" and "voluntary" fallback usage .........................................................41 

Figure 17. Average number of results from the knowledge database on specific 

turns..................................................................................................................43 

  



www.manaraa.com

ix 

 

List of Figures (Continued) 

Figure Page 

Figure 18. Average value of moves recalled from the database per turn. .........................44 

Figure 19. Total distribution of types of moves performed. ............................................. 45 

Figure 20. Case where bot_rucsmat recalled a move from its knowledge base 

(right) that was better than bot_hippo’s alpha-beta calculated move 

(left)..................................................................................................................47 

Figure 21. Case where bot_rucsmat’s best recalled move (right) was worse 

than bot_Hippo’s alpha-beta generated move (left). ....................................... 49 

Figure 22. An initial board state from the Arimaa database (game 1, turn 2w). .............. 52 

Figure 23. Two initial moves that are similar up to radius 4. ........................................... 53 

Figure 24. Aggressive opening move sending the elephant into enemy territory. ........... 57 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

x 

 

List of Tables 

Table Page 

Table 1. Calculated Piece Data Values. ............................................................................ 13 

Table 2. Knowledge Base learned_moves Table Schema. ............................................... 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

1 

 

 

Chapter 1 

Arimaa Rules 

1.1 Background 

 When World Chess Champion Garry Kasparov was defeated by IBM’s DeepBlue 

in 1997, many lauded the achievement as a sign that artificial intelligence was catching 

up to the power of human intelligence. While this indeed was the first instance of a 

computer defeating one of the best human chess players in the world under standard 

chess tournament time rules, many people, including computer scientist Omar Syed, saw 

this as a victory for hardware and brute force rather than software and artificial 

intelligence. As part of his mission to advance the field of artificial intelligence following 

DeepBlue’s victory, Omar Syed developed Arimaa with the specific intent of creating a 

game that would be simple for humans to learn but difficult for computers to play [9]. 

The game’s impressive branching factor makes searching through the expansive game 

trees via standard game-tree search methods impractical without massive computational 

resources. For comparison, the average branching factor in chess is approximately 35 [2, 

12] whereas the average branching factor in Arimaa is over 17,000 [3]. 

To that end, the Arimaa Challenge was designed with rules that constrain all 

computer participants of the challenge to specific hardware specifications and move time 

limits to make brute force searches impractical and forcing exploration of other heuristics 

and algorithms. The challenge began in 2004 and was to remain open until 2020 or until a 

computer challenger could defeat each of the top three human Arimaa players in the 

world in an official best-of-three match, with a prize of at least $10,000 to the humans 



www.manaraa.com

2 

 

 

who create the winning program [2]. Until very recently, humans trounced opposing 

computer challengers with relative ease, with the computer opponent often losing most of 

the games even against humans giving the bot a handicap [2]. Then, in 2015, David Wu’s 

bot Sharp astounded the Arimaa world with a resounding victory against the top three 

human players, finally ending the challenge after eleven years [2, 13]. Although the 

official challenge is over, there are still many avenues of research and many opportunities 

to advance the field of game-playing artificial intelligence with Arimaa. The game 

presents challenges to traditional artificial intelligence techniques that will continue to 

encourage the introduction of new ideas and algorithms in the future.  

1.2 Gameplay 

 Although Arimaa has its own rules and pieces, the game can be played with a 

normal chess set, as described in Figure 1. There are two sides - gold and silver - with the 

gold player moving first. The game starts with the gold player putting his or her pieces in 

any configuration on the first two rows of the board. The silver player then puts his or her 

pieces in any configuration on the first two rows of the board in front of the player, 

allowing the silver player the ability to set up pieces in a way that responds to gold’s 

setup. After the setup phase is complete, the gold player takes his or her first turn, with 

turns alternating between both players. 

 

 

  



www.manaraa.com

3 

 

 

Piece and Range of Movement Chess Equivalent 

  

Elephant King 

 
 

Camel Queen 

  

Horse Rook 

  

Dog Bishop 

 
 

Cat Knight 

  

Rabbit Pawn 

Figure 1. Arimaa pieces listed in order from strongest (elephant) to weakest (rabbit) with 

their movement directions and equivalent chess pieces. 

  

  



www.manaraa.com

4 

 

 

During a player’s turn, the player can move any of his or her pieces to an adjacent 

empty square in any of the four cardinal directions (except rabbits, which cannot move 

backwards toward the player). This single space movement is called a “step” and a player 

is allowed up to four steps in a turn. Note that the player may move any of his or her 

pieces with each step, so four different pieces can be moved in a single turn. In official 

games and in the remainder of this thesis, these moves are recorded in algebraic notation 

similar to the notation used in chess, as described in Figure 2. This format describes the 

piece (upper-case letters representing gold pieces and lower-case letters representing 

silver pieces), followed by the position (e.g. b2), followed by the cardinal direction that 

the piece is being moved (north, south, west, east, and x for a captured piece). 

 

 

 

 
Figure 2. Algebraic notation example. 

 

 

 

Besides simply moving his or her own pieces, a player may also “push” or “pull” 

a weaker opposing piece into an adjacent empty square. As noted in Figure 1, each piece 



www.manaraa.com

5 

 

 

in Arimaa has an inherent strength that makes it weaker or stronger than a different piece. 

The elephant, for example, is the strongest piece and can thus push or pull any opposing 

piece that is weaker than it (pieces of equal strength cannot move each other, so an 

elephant cannot push or pull an opposing elephant). Since rabbits are the weakest piece, 

they cannot push or pull any piece. A “push” is initiated by moving an opposing piece 

that is next to a stronger friendly piece to an empty adjacent square, and then finished by 

moving the friendly piece to the square that the opposing piece just vacated. Similarly, a 

“pull” starts by moving a friendly piece to an empty adjacent square and then finishes by 

moving the weaker opposing piece to the square that the friendly piece just vacated. Each 

step of a push or pull counts as one of the four steps a player can make in his or her turn, 

and the two steps comprising a push or pull must be done one after another. 

 Pieces can be captured when they land on one of the four trap squares on the 

board with no adjacent friendly pieces. As long as there is a friendly piece on an adjacent 

square of the trap, that trap is considered “safe” for that player’s pieces. If both players 

have pieces next to a trap, then the trap is safe for both players’ pieces until the defending 

pieces are pushed, pulled, or moved away from the trap. 

 Freezing pieces is another tactical mechanic in Arimaa. A piece is immediately 

“frozen” if it is adjacent to a stronger enemy piece and there is no friendly piece 

(regardless of the friendly piece’s strength) in any adjacent square. Frozen pieces cannot 

move until a friendly piece is in an adjacent square in any cardinal direction. 

 There are three ways to win a game of Arimaa. The most common goal, and the 

one that drives the other two win conditions, is to get a rabbit to the final row at the 



www.manaraa.com

6 

 

 

opponent’s side of the field. Because a rabbit’s advancement is so important, another way 

to win the game is to capture all eight of the opponent’s rabbits. And finally, a player can 

win if the opponent cannot move any of his or her pieces. As soon as any of these three 

conditions is true, the winner of the game is decided and the game is over. 

1.3 Current Methods and Literature Review 

All of the top-tier Arimaa programs use iterative-deepening depth-limited alpha-

beta searches to find their best moves [12], which is at the core of most chess AI 

programs as well. As previously expressed, however, the massive branching factor of the 

game means the search depth is very limited and cannot be conducted exactly the same 

way it is conducted in chess. Instead, these programs must heavily rely on heuristic 

evaluation functions, depth limits, and move-ordering functions to be effective [12]. Most 

of the programs that have faced human challengers in the Arimaa challenge have used 

these augmented alpha-beta searches with varying levels of success. 

1.4 Alpha Beta Search 

David Wu’s 2011 thesis titled “Moved Ranking and Evaluation in the Game of 

Arimaa” [12] describes the core implementation of bot Sharp, which uses iterative-

deepening depth-limited alpha-beta search as mentioned above. An alpha-beta search 

examines each node in a game tree of possible moves depth-first and calculates the 

minimax value of each node [12, 13]. Because of Arimaa’s immense branching factor, a 

depth-limit is typically imposed upon this search to prevent programs from exceeding the 

time limits provided for each move and so that other branches can be explored. Iterative-

deepening increases the depth limit as promising nodes are examined and as time permits, 



www.manaraa.com

7 

 

 

so that the search can be performed for a certain amount of time rather than a static depth. 

Additionally, the lower and upper bounds for the subtree starting at a specific node are 

also tracked, allowing entire subtrees to be efficiently pruned if the algorithm determines 

further searching within the subtree will not provide a better result than the nodes already 

examined. This alpha-beta pruning relies heavily on the evaluation function used to 

value each node, which is where there is the most variance and exploration in Arimaa 

bots. 

In both his 2011 thesis and his 2015 paper discussing the final version of his 

championship-winning bot, Wu stresses the importance of developing a good move 

ordering and function dependent on positional features, among other improvements [12, 

13]. If “good” moves are examined first in an alpha-beta search, then the search will 

complete much quicker, because the upper and lower bounds that are set during the 

search will prune more nodes quickly. The positional features that these functions rely on 

involve Arimaa-specific concepts, such as trap control and goal threats, and tactical 

configurations such as blockades, hostages, and frames [12]. The innovation that 

differentiates Wu’s bot Sharp from other alpha-beta based bots is that its move ordering 

function was a result of using machine learning to train a Bradley-Terry model over 

thousands of expert Arimaa games in order to better “predict” expert moves [12,13]. 

1.5 Monte Carlo Tree Search 

Although augmented alpha-beta based search algorithms adapted from chess have 

shown to be the most promising, other unique approaches have also been explored with 

interesting results, as discussed in Kozelek (2009) [6] and Jakl (2011) [4]. One such 



www.manaraa.com

8 

 

 

approach is Monte Carlo Tree Search, which has found some measure of success in the 

bots playing the game of Go [4, 6]. Monte Carlo methods have been useful in 

applications where calculating the full range of possibilities would be unreasonable, and 

since Go and Arimaa have extremely large branching factors [4], they are prime 

candidates to benefit from their usage. 

A Monte Carlo tree search (MCTS) simulates pseudo-randomly playing through 

the game tree up to a certain point in the tree [4, 6]. Each playout is recorded, and the 

final results are analyzed in order to choose the moves that result in the most positive 

playouts. Arimaa-specific domain knowledge is imbued in each step of the playout and 

its evaluation in order to more efficiently choose the best results. For example, Kozelek 

gave pushing/pulling pieces, capturing pieces, moving elephants, and moving rabbits 

later in the game higher precedence [4]. Although both Jakl and Kozelek found that their 

MCTS-based bots were able to play reasonably well with weak evaluation functions, 

their bots could not match the level of the top alpha-beta-based bots. 

1.6 Other Unique Techniques 

 Although alpha-beta searching is the most promising algorithm discussed so far, 

there have been many techniques explored that would enhance or supplement the typical 

alpha-beta search. For example, Gerhard Trippen in his 2009 paper [10] implemented a 

bot that enhances the evaluation function to recognize, detect, and perform plans such as 

trap defense, trap attacks, and multi-turn strategies like flash kidnapping using a directed 

acyclic word graph. Trippen’s bot only implemented flash-kidnapping, but stresses the 

ability to make the bot stronger by adding additional strategies to the graph [10]. The 



www.manaraa.com

9 

 

 

flash-kidnapping strategy revolves around “kidnapping” and capturing a piece before the 

opponent is able to effectively respond without weakening its position. As such, the 

graph is flexible enough to not require specific pieces that would be captured, but is 

focused on certain positions on the board. 

 Another paper by Choksi, et al (2013) explores the impact of game phase on 

evaluation [1]. Game phase is something that human players of the game may consider 

(for example, shifting strategic focus to getting a rabbit to the other side of the board after 

many critical pieces are captured or incapacitated), but is not very clearly defined in a 

game like Arimaa. Choksi et al attempt to break games into three phases based on the 

advancement and number of pieces on the board for each player and augment the board 

evaluation and move ordering functions in an alpha-beta bot based off of the open-

sourced bot Fairy. They found that taking game phase into account in the board 

evaluation function did not improve the bot’s win rate (it won less than ⅜ of its games), 

but did have a slightly positive effect when used in the move ordering function [1]. 

  



www.manaraa.com

10 

 

 

Chapter 2 

Our Approach 

 In general, the human ability to improve over time can be partially attributed to 

our ability to analyze and learn from our past experiences. The idiom “practice makes 

perfect” encourages improvement over simple and mindless repetition by learning what 

works and what fails. Our approach attempts to capture this for Arimaa by generalizing 

the board state so that patterns within the board can be recognized and reconciled against 

prior experiences. As more games are played (and either won or lost), we can attempt to 

draw a correlation between the moves made in the game and whether it led to a victory or 

a loss. Over time, as more games are played, we would expect to see that moves that led 

to victory more often than not can be considered “good moves” whereas moves that led 

to losses more often than not can be considered “bad moves.” 

 While this sounds simple, the complexity of moves in Arimaa makes this 

relatively non-trivial. It is quite rare that the exact same move will be made in any two 

games of Arimaa (barring initial moves from identical opening setups). It is also quite 

possible that determining the effectiveness of a move is highly dependent upon the 

situation in which it is used; a move that led to a victory in one game can lead to a critical 

loss in another. Therefore, the current board state and the resulting state must be taken 

into consideration when gauging such moves. 

 With these basic assumptions, we developed a format for generalizing the state of 

the board (or a specific region of a board state) in a way that does not require the exact 



www.manaraa.com

11 

 

 

same pieces to be on the board in the exact same spots. The latter is where our approach 

is different from existing approaches that we know of; transposition tables and Zobrist 

hashing is used often in chess and Arimaa alpha-beta searches to make sure that the exact 

same board state is not encountered again [4, 6], but our approach can detect states that 

are relatively similar but not exact. For each piece on the board, we capture what we shall 

henceforth call the piece’s piece data in a single “hash” string. 

2.1 Piece Data Format 

This piece data string by itself does nothing more than capture the unbiased 

information about a piece’s position on the board, including distances of stronger and 

weaker friends, stronger and weaker enemies, as well as traps and boundaries. Note that 

the specific mechanics of this game - the ability to freeze and unfreeze pieces by moving 

certain pieces next to them, for example - drove the decisions of what information to 

capture. This information is captured for each possible radius (more accurately, a taxicab 

distance) on the board. The largest possible distance between any two pieces on the board 

is 14 (i.e. the taxicab distance between a1 and h8), so the aforementioned information is 

captured in 14 chunks, where each chunk represents the data at that distance. Each chunk 

can be seen as a 8-character hexadecimal string describing how many of the following 

elements can be found at that specific distance: 

 

1 0 0 1 1 2 0 1 

Number 

of 

stronger 

friends 

Number 

of equal 

friends 

Number 

of 

weaker 

friends 

Number 

of 

stronger 

enemies 

Number 

of equal 

enemies 

Number 

of 

weaker 

enemies 

Number of 

boundaries at 

this distance in 

a straight line 

Number 

of traps 



www.manaraa.com

12 

 

 

A full piece data hash would contain 14 of these chunks with each subsequent 

chunk representing the data at that radius (so the first chunk describes radius 1, the next 

describes radius 2, and so on). Grouping this data by radius allows us the ability to 

compare a localized area of the board rather than the full board in order to spot common 

patterns that only involve a few pieces in a certain area of the board. Additionally, data 

for radius 0 is prepended to the final hash in order to capture data about the spot it is 

currently occupying and the piece itself: 

1 2 0 

Owned by current player On Number of Boundaries On Trap 

 

 As an example, consider the silver rabbit at e5 in the position shown in Figure 3. 

Table 1 describes calculates the data needed to generate the piece data hash for that rabbit 

 

 

 



www.manaraa.com

13 

 

 

 

Figure 3. Position with spaces labeled with distance from the rabbit on e5 

 

 

 

Table 1  

Calculated Piece Data Values 

Radius Friends  Enemies Boundaries Traps 

 stronger equal weaker  stronger equal weaker   

1 1 0 0  0 0 0 0 0 

2 1 0 0  1 1 0 0 1 

3 2 1 0  0 0 0 2 2 

4 0 0 0  1 0 0 2 1 

5 0 1 0  0 2 0 0 0 

6 0 1 0  1 1 0 0 0 

7 0 1 0  0 1 0 0 0 

8 0 0 0  0 1 0 0  0 

This table calculates the data that make up the piece data hash for the rabbit at e5 in the 

win-in-two state shown in Figure 3. 



www.manaraa.com

14 

 

 

Table 1 only calculates up to radius 8 because there is no interesting data for this 

piece beyond that radius due to the rabbit’s position on the board, as shown in Figure 3. 

Although the complete hash would contain all the data up to radius 14, the full hash is 

almost never used during actual gameplay as we will explore later. Also note that the 

“boundaries” value only counts the boundaries that can be optimally reached at the 

specified radius. For example, looking at the board above where each spot is labelled 

with the number of steps it would take, the rabbit at e5 can be thought to be three to seven 

steps away from the eastern boundary since all of the spaces in column H are part of the 

boundary. If we included those spaces, we can see that the number of boundaries for radii 

4 - 7 in the table would all equal 4, since the rabbit can reach any border on the board 

within 4 - 7 steps. Tracking this in the piece data hash is cumbersome and of little worth, 

since eventually we would see 4s in the later radii of the hash. Instead, these calculations 

only consider the minimal distance since the piece data for two pieces in similar spots 

with respect to the boundaries would still be equal. This approach also simplifies and 

optimizes implementation by only needing to look at the piece’s current row and column 

to determine boundary distances. 

The full piece data hash would consist of the three header values described above 

followed by a concatenation of the values in Table 1 in radius order. If the board state 

shown is silver’s turn, the header value would be “100,” whereas it would be “000” if it 

was gold’s turn. Putting all of this data together, the final piece data hash for re5 would 

be the following when it is silver’s turn to move (note that spaces have been added 

between radii segments for clarity, but are not needed in the final hash string): 



www.manaraa.com

15 

 

 

100 10000000 100110001 21000022 00010021 01002000 01011000 

01001000 00001000 00000000 00000000 00000000 00000000 

00000000 00000000 

2.2 Partial Hash Matches 

More often than not, however, a partial hash string will prove to be more useful. 

Using the full hash limits the ability to compare two states since the hashes will only 

match when the positions are exact rotations of each other. A partial hash string will 

truncate this full hash to the desired radius to focus on a specific region of interest on the 

board. For example, since pieces can only move a maximum of 4 steps on the board, we 

could truncate the hash generated above for re5 to 100 10000000 100110001 

21000022 00010021, allowing comparison between other 4-step regions in other 

board states. 

As an example, consider the highlighted pieces in the two board states in Figure 4. 

 

 

 



www.manaraa.com

16 

 

 

  
Game 814:35g Game 864:10s 

 

Figure 4. Example of two board states from the Arimaa games database where two 

entirely different pieces have the same piece data hash up to radius 4. 

 

 

 

The hash for the highlighted pieces at radius 4 (outlined by the red borders) in both 

images would be 100 00000011 00100010 00201000 00100002. Even 

though the pieces themselves and the board positions are different, this hash value shows 

us that both the gold elephant and the silver cat are in very similar positions relative to 

other pieces and spaces on the board within a 4-space radius. Because a piece can only 

take up to a maximum of 4 steps in a given turn, this makes movement for one of those 

pieces an inherently interesting move to consider for the other piece. This ability to 

generalize a board state in terms of relative distances and strengths is the core value 

gained by calculating these piece data hashes. 

 



www.manaraa.com

17 

 

 

2.3 Recognizing Similar Moves 

 Piece data hashes on their own only describe the pieces on a board in a static 

board state. In order to extend this concept to find “similar moves,” we must generalize 

the change that these pieces go through in terms of the piece data being collected in the 

hash, which we call a move transition. A move transition consists of a collection of piece 

data hash pairs, each pair representing a piece transition that describes the piece data 

before and after the move for each piece that was moved as an effect of the move 

performed for that turn. 

2.4 Examples of Transitions 

 Consider the board state in Figure 5 with silver’s turn to move. 

 

 

 

 

Figure 5. Board state before win-in-two move. 



www.manaraa.com

18 

 

 

The silver rabbit on e5 would have a piece data hash (up to radius 4 for simplicity) of 

10010000000100110012100002200010021. If the rabbit moves to f2 via the 

move re5s re4e rf4s rf3s, then the rabbit’s piece data hash given the resultant board state 

below would be 10000000011100010100000200000020002. 

 

 

 

 
Figure 6. Board state after win-in-two move. 

 

 

 

This transition can be stored in a map data structure mapping the piece data before the 

move to the piece data after the move in order to describe how a piece’s piece data 

changed as a result of a given move. In this case, the map would conceptually look like 

this if we only stored radius-5 hash strings in the map: 

{‘10010000000100110012100002200010021':'10000000011100010100000200000020002'} 



www.manaraa.com

19 

 

 

This map represents a “move transition” and contains one “piece transition.” In our 

implementation, only pieces moved during the turn are stored in the map. If the silver 

elephant on e3 was also moved, for example, then its “before” and “after” piece data 

would also be stored in the map. If a piece was captured by the end of the move, the 

“null” piece data value is used for the ending value in the map, which is a piece data hash 

with all values set to 0 in our implementation. 

2.5 Recognizing Features Using Piece Data 

 One key benefit of this piece data format is the ability to recognize tactical 

patterns, or features, on a given board in a query-able format. The components of the 

hash as described above intentionally capture the kind of information that can fuel 

informed decisions about a piece’s state on the board in a sequence of bytes. The 

following section outlines a few of the features that can be easily recognized from these 

hashes (or variations of these hashes) using a format akin to bitmasks to express the 

general pattern. None of these features have been implemented in bot_rucsmat, but are 

explained here for use in future work and to illustrate the possible uses of this format. 

2.6 Examples of Known Patterns 

2.6.1 Frozen pieces. As described in 1.2 above, a core tactical mechanic in 

Arimaa is the ability to “freeze” a piece by having a stronger enemy piece immediately 

next to it with no friendly pieces in adjacent squares. For example, the golden elephant on 

e4 has frozen the silver horse on d4 in the following board (Game ID 864, Turn 9g): 

 

 

 



www.manaraa.com

20 

 

 

 

Figure 7. Board state with frozen silver horse. 

 

 

 

If we express this logic in terms of the data captured in the piece data hashes described 

earlier, we can say that a piece is “frozen” if one or more stronger enemies are exactly 1 

square away and exactly 0 friendly pieces are exactly 1 square away. The piece data hash 

up to radius 1 for the silver horse in this example would be 000 00010000 (expressing 

that there are no friendly pieces and one stronger enemy piece exactly one square away) 

and the hash for the gold elephant would be 100 00000100 (expressing that there are no 

friendly pieces and one weaker enemy piece one square away), which adequately 

expresses the aforementioned condition for freezing a piece. 

 This, however, is a relatively trivial case where there are no other pieces or factors 

in the radius-1 hash. To generalize this, we would need to account for the other variable 

factors in that hash (traps, boundaries, additional pieces, etc). If we were to replace the 

portions of the hash that do not play a part in determining whether or not a given piece is 



www.manaraa.com

21 

 

 

frozen with an X and set the required portions of the hash to the appropriate values, this 

template hash (excluding the header for now) would look something like this for radius 1: 

 

0 0 0 1 X X X X 

Number 

of 

stronger 

friends 

Number 

of equal 

friends 

Number 

of 

weaker 

friends 

Number 

of 

stronger 

enemies 

Number 

of equal 

enemies 

Number 

of 

weaker 

enemies 

Number of 

boundaries 

at this 

distance in 

a straight 

line 

Number 

of traps 

 

Given the template above, we know that if the piece data hash at radius 1 

(excluding the header) is of the format 0001XXXX, then the piece this hash is describing 

is frozen. Depending on the format that these hashes are stored, normal pattern-matching 

techniques (such as regular expressions if stored as a string or bitmasks if stored as raw 

bytes) can be used to determine whether or not a piece is frozen. 

Note that we have ignored the three hexadecimal digits in the header for the above 

example. The header for this feature can be ignored unless we are specifically looking for 

the current player’s pieces that are frozen or the opponent’s pieces that are frozen. In 

those cases, the “owned by current player” digit can be examined separate from the 

IS_FROZEN matching above to determine whether or not the frozen piece is owned by 

the current player. 



www.manaraa.com

22 

 

 

2.6.2 Immobilized pieces. Pieces can be immobilized without necessarily being 

frozen. Since the elephant is the strongest piece in the game, there is no way for an 

elephant to be frozen by a stronger piece. However, as the gold elephant in the board 

below [14] illustrates, elephants can be immobilized with great effort: 

 

 

 

 

 

 
Figure 8. Example of elephant blockade. 

 

 

 

The gold elephant in this position can make no legal move and is thus immobilized.1 This 

can also be expressed in piece data hashes, albeit with more complications than the 

                                                 

 

1 The silver player has created an elephant blockade, a strategy discussed in more detail in [14]. 



www.manaraa.com

23 

 

 

frozen pattern described above. There are many cases to be considered that all would lead 

to a piece being immobilized like this: 

1. Have 4 stronger or equal strength pieces at radius 1, 

2. Have 4 weaker pieces at radius 1, and 8 pieces of any strength at radius 2 (so 

those weaker pieces cannot be pushed or pulled), 

3. Have two borders within 1-2 spaces and fill the remaining spaces at radii 1-2 in 

any combination of the above so that the piece cannot push/pull its way out, 

4. Any combination of the factors above such that the piece is unable to move a 

single step in any direction. 

Although each of these cases can be expressed in terms of different piece data hashes, 

the number of possibilities are numerous. There is also the possibility that a friendly 

piece can attempt to rescue an immobilized piece by pushing and pulling the surrounding 

pieces out of the way across multiple turns, which would require more computation and 

analysis. We would need to decide whether we want to consider these additional cases 

and the complexity they add in order to detect “total” immobilization, or whether simply 

knowing that a piece is currently immobilized is sufficient. Although immobilizing pieces 

so that the opponent cannot make any legal moves is a valid win condition in Arimaa, the 

chance that such a win condition would arise in high-level play is very rare. 



www.manaraa.com

24 

 

 

2.6.3 “Capturable” pieces. Capturing pieces is an important core mechanic in 

Arimaa, so being able to detect capture opportunities can be useful. However, this pattern 

is a bit more involved than detecting freezing pieces because of the interaction with other 

pieces that may or may not be defending a trap. In the simplest case, having a piece 1 

space away from a trap is an indicator that the piece could potentially be captured. 

Similar to the way we look at the radius-1 hash for frozen pieces, we can check that the 

Number of Traps portion of the hash in the radius-1 segment equals 1. 

X X X X X X X 1 

Number 

of 

stronger 

friends 

Number 

of equal 

friends 

Number 

of 

weaker 

friends 

Number 

of 

stronger 

enemies 

Number 

of equal 

enemies 

Number 

of 

weaker 

enemies 

Number of 

boundaries at 

this distance 

in a straight 

line 

Number 

of traps 

However, if the trap is safe (i.e. there is another friendly piece adjacent to the 

trap), then relying only on the total number of traps like this hash can be misleading, 

since stepping onto the trap would not result in a capture. In this case, the piece data 

format described earlier may not suffice. Because a maximum of two traps may be the 

same distance away from a piece on any given spot on the board, it may be better to split 

the “Number of Traps” field into “safe traps” and “unsafe traps,” where a “safe trap” is 

one where there is at least one other friendly piece besides the current piece next to the 

trap, and an “unsafe trap” is the opposite. Then, simply looking at the “unsafe traps” field 

in the hash would easily provide insight into the pieces that are in danger of being 

captured at the cost of additional computation per piece. 



www.manaraa.com

25 

 

 

2.6.4 Flash kidnapping. Although these piece data hashes only attempt to 

express a generalized view of the relationships on a static board state, they can be used in 

tandem with other techniques that benefit from the generalized format to provide more 

functionality. For example, consider the following figure from Trippen (2009) [10] 

detailing the steps taken to perform the multi-turn “flash-kidnapping” strategy (note only 

the relevant portion of the board is displayed in each step): 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

26 

 

 

 
Figure 9. Example of the “flash kidnapping” strategy over multiple turns. 

 

 

 

Starting at (a), we see that the silver elephant has the gold horse frozen along the 

boundary of the board. This is a “horse hostage” strategy that an Arimaa player may 

employ, since the horse cannot be freed easily without focusing the effort of many gold 

pieces across many turns in an attempt to free it. In the turns after (a), the gold elephant 

plans to use the hostage situation to its advantage by capturing other pieces while the 

silver elephant is occupied (a strategy called “flash kidnapping” in [10]). Steps (b) - (f) 

show the states at the end of each of gold’s turns as it ideally tries to implement its flash 



www.manaraa.com

27 

 

 

kidnapping strategy. In (b), the gold elephant has pulled the silver cat towards its position 

(Ed6n Ed7s cd8s), and in (c) - (e) pushes and pulls the cat until it is captured in the c32 

trap, all the while keeping the c6 trap safe (by keeping the gold elephant adjacent to the 

trap at the end of each turn, the silver elephant cannot capture its horse hostage in that 

trap). Finally, in (f), the gold elephant returns to its starting position so that it can perform 

the same strategy again if any piece comes within push/pull distance of it on the board. 

The basic premise here is that the gold player (in this case, a bot that is 

implementing this strategy) is banking on the fact that opposing silver bot will not expend 

resources to save the silver cat or obstruct its path to the unprotected trap. This 

assumption relies on the fact that the bot would not be able to perform an alpha-beta 

search deep enough to look three to four moves in the future, and by the time it realizes 

gold’s true intent, it would be too late to efficiently stop its demise and would not be 

inclined to free a strong gold horse just to save a weak silver cat.  

Trippen also explains in his paper [10] how a directed acyclic word graph could 

be used to detect the patterns that would trigger the use or detection of this strategy: 

                                                 

 

2 The moves to reach each state would be as follows: 

(c) - Ed6e cd7s cd6s Ee6w 

(d) - cd5w Ed6s cc5s Ed5w 

(e) - cc4s cc3x Ec5s Ec4n 

 



www.manaraa.com

28 

 

 

 
Figure 10. Directed acyclic word graph describing the flash kidnapping strategy. 

 

 

 

Once the bot has identified that a horse hostage situation exists (as is the case with the 

gold elephant and silver horse above), the home trap (at c3 in the above example) must be 

protected with additional pieces so that the hostage cannot be captured there without 

removing those additional pieces first. Finally, the flash-kidnapping strategy can be 

executed as the above example describes with the sequence of moves in (a) - (f). 



www.manaraa.com

29 

 

 

Note that each phase in the graph above specifically spells out exact positions to 

recognize and the type of pieces that can be a part of this strategy. Generalizing this using 

the piece data format allows the ability to express the phases and actions in this graph in a 

succinct way that can still be used, even if the elephant, horse, and dog in the graph are 

instead a camel, dog, and cat, respectively. Additionally, by using distances to the 

boundaries and the traps, the same technique can be applied in any orientation on the 

board, instead of a very specific case with specific positions on the board. This flexibility 

allows us the ability to specify strategies and patterns in very general terms and have 

them recognized and applied during gameplay without exact matches.  

 

  



www.manaraa.com

30 

 

 

Chapter 3 

Implementation 

 In order to test the usefulness of piece data hashes, we attempted to create a bot 

that would save these piece data hashes in a database and attempt to “recall” similar 

moves previously performed to guide the selection of the bot’s moves. This chapter 

outlines our implementation of the bot, affectionately named bot_rucsmat3. 

3.1 Game Database  

 In order for the bot to have a decent baseline to start with of “good moves”, we 

used the game data that is freely available for download on the official Arimaa website. 

This game data came with information about the game and its outcome, the ranking of 

both players, and the list moves performed during the game. All of this data was collected 

into an SQLite database as described in [8] that could be used to replay games and have 

bot_rucsmat learn what moves “good players” (as defined by a higher ranking) made that 

lead to victory. This baseline would make up the initial core of the bot’s knowledge 

database. 

3.2 Knowledge Database 

 The “knowledge database” (or “knowledge base,” as it will be called often 

throughout this paper) is where bot_rucsmat stores transition data that it can reference 

when deciding to make a move. Conceptually, the transition hashes are stored in a 

                                                 

 

3 Rowan University Computer Science – McKee, Ahmed, Tinkham. 



www.manaraa.com

31 

 

 

recursive trie tree as portrayed in Figure 11, which allows us to easily and efficiently 

scope queries to a specific radius of interest. 

 
Figure 11. Knowledge base recursive trie tree. 

 



www.manaraa.com

32 

 

 

A given node at depth d1 represents a partial piece data hash (the before_hash) up to 

radius d1 (the parents of the node make up the earlier segments of the string). Note that 

the header is included as part of the hash for radius 1 for efficiency, since the minimum 

radius we would want to examine would be radius 1. Each of those nodes stores a trie tree 

that contains all of the possible resulting states of the transition (the after_hashes) learned 

for the given before_hash. Each node at depth d2 in the subtree stores a value for the 

transition up to that radius, which is calculated based on the following formula: 

𝑠𝑀𝑅

𝑡(14 − 𝑑1)(14 − 𝑑2)
 

 M is a multiplier applied to the move based on factors of the game. For our 

implementation, M is simply 1 if the player making the move won the game or -1 

if the player lost. 

 R is the player’s ranking on the Arimaa site. 

 t is the total number of piece transitions in the move. A move may consist of one 

or more pieces moved, so a move can be thought of us a piece’s transition from 

one state to another and dividing by the number of transitions in the move gives 

each transition equal weight toward the move’s total value. For example, if 4 

pieces were moved on the board, then there would be 4 piece transitions in that 

move, and we are giving each of those 4 piece transitions equal worth in the final 

value. 

 d1 is the desired radius of the before-hash (the node’s depth in the outer trie tree). 



www.manaraa.com

33 

 

 

 d2 is the desired radius of the after-hash (the node’s depth in the inner trie tree). 

 s is a “scaling factor” applied to the move based on the stage in the game when 

the move was performed (i.e. moves performed later in the game have more 

weight than moves performed earlier in the game). For our implementation, this 

scaling factor was simply the turn number divided by the total number of turns in 

the game, giving each move a fractional weight based on how close it brought the 

player to the game’s end. 

 The constant 14 is the maximum distance possible on the board between the two 

furthest positions on the board (i.e. opposite corners like a1 and h8). 

Our implementation uses a relational database to store this tree using materialized 

paths [5, 11] for both hashes in the transition. The pseudocode in Figure 12 describes 

how these entries are added into the database, whose schema is described in Table 2. 

 

 

 
Figure 12. Pseudocode to persist the knowledge base's recursive trie tree. 



www.manaraa.com

34 

 

 

Table 2 

Knowledge Base learned_moves Table Schema 

Field Name SQLite3 Field Type Description 

before_hash VARCHAR(255) 

NOT NULL 

The piece data hash up to radius d1 for a 

piece before the move was made. 

after_hash VARCHAR(255) 

NOT NULL 

The piece data hash up to radius d2 for a 

piece after the move was made. 

value REAL NOT NULL The total value for this before-after 

transition. If this transition is seen again, 

the value of that transition will be added to 

this stored value. 

occurrences BIGINT NOT 

NULL 

The number of times this transition has 

been seen. 

normalized_value REAL NOT NULL The “average” value of this before-after 

transition, calculated as value/occurrences. 

Note. Each row in this table represents a node in the inner trie trees described in Figure 

11. 

 



www.manaraa.com

35 

 

 

As games are played, existing entries will be updated positively or negatively 

depending on the outcome of the match or new entries will be created if one for the 

specific before-after combination does not exist. Because this data is stored as a trie tree 

where each level of the tree represents a specific radius, it is possible that only a few 

portions of the hash would warrant a new entry. 

In order to jumpstart bot_rucsmat’s education with an appropriate baseline of 

relatively “expert” moves, we had bot_rucsmat run through a subset of 1000 games from 

the games database. The Arimaa site also has a collection of “win-in-two” puzzles, which 

consists of a list of game states from the game database where making a specific move 

will guarantee the player’s victory in his or her following turn. We had bot_rucsmat also 

learn all of these states while assigning an artificially high value to the “win-in-two” 

transition described as the solution to each puzzle, which should allow bot_rucsmat the 

ability to recognize a similar win-in-two condition if one were ever to present itself. 

3.3 Generating Best Move 

 With a collection of learned transitions available to bot_rucsmat, the next and 

arguably most important task was to use this data to actually pick the “best” move during 

gameplay. In order to do this, bot_rucsmat first generates ALL possible unique moves for 

a given board state (which can be done rather efficiently despite the large number of 

moves possible) and generates a transition hash for each move. We then must search the 

knowledge database for entries that match the transition up to a specified radius, and 

order the moves based on the normalized_value stored for that transition. Note that 

normalized_value is used so that the moves that have consistently performed well over 



www.manaraa.com

36 

 

 

time are chosen over the moves that simply have been encountered often. In the latter 

case, the value field would have a significantly larger amount stored as the “value” for 

that transition, even if the average value for both moves being considered are equal. 

 The ordered collection of transitions can further be filtered by a desired range for 

the move’s value. For example, our implementation only considers moves that have a 

value greater than 0.0, which simply means only moves that have had a net positive 

impact over the games observed thus far are considered and moves that have led to losses 

more often than victories are not considered. Other implementations may consider moves 

within a specific positive range or may even include some negative moves in case one of 

those moves performs better in a specific instance. 

The “best” move would be the move with the maximum value from the collection 

of transitions searched. Our implementation considers all moves with a value within a 

delta of 1.0 to be equal in order to explore further options. If there is a tie for the 

maximum value (or multiple moves are within 1.0 of the maximum value), then 

additional heuristics are employed to break the tie and pick the move that works best for 

the current board state. Our prototype implements a simple heuristic that computes a 

score favoring states where the player has control of a greater area of the board, has fewer 

pieces captured or at risk of being captured, has fewer pieces frozen, and has elephants 

towards the center of the board, brings our rabbits closer to the goal boundary and 

opposing rabbits further from their goal boundary. 

In the case that the knowledge database query returns no results or returns moves 

that have a value outside of the acceptable range, bot_rucsmat relies on its fallback to 



www.manaraa.com

37 

 

 

generate a move. Our implementation falls back on an alpha-beta bot provided on the 

Arimaa site called bot_Hippo to generate a move in such cases. 

Note that our current implementation does not search further into the game tree. 

Over time, this approach should reduce the need to perform a deep search into the game 

tree since the proper heuristics used to score transitions as they are learned should take 

the move’s effect on the game into account. 

 

  



www.manaraa.com

38 

 

 

Chapter 4 

Results and Analysis 

In an attempt to compare the effect of limiting knowledge database matches to 

specific radii, we had bot_rucsmat play at least one hundred games against bot_Hippo 

where it matched transition data from the knowledge database up to a specific 

radius.  Because bot_rucsmat falls back on bot_Hippo’s move generator if a move cannot 

be generated from the knowledge base, we can better compare the impact that using the 

knowledge base has on a bot’s win rate. In this chapter, we will present the data collected 

and the conclusions that we derived from these results. 

4.1 Trends Per Radius 

 Figure 13 shows the percentage of wins and losses that bot_rucsmat had for each 

radius over a hundred or more games, with Figure 14 breaking down the wins by color. 

For each radius, bot_rucsmat played at least 100 games with the before_radius and 

after_radius set to the same value. In general, we noticed that choosing a mid-range 

radius usually resulted in better performance. Also, bot_rucsmat’s won marginally more 

while playing as gold, but the difference is not drastic enough to be significant.  A radius 

of 6 resulting in an interesting advantage with an approximate 54% win rate over 

bot_Hippo, while a radius of 5 came close with a win rate of approximately 45%. 

 

 



www.manaraa.com

39 

 

 

 

 

 

 

Figure 13. Percentage of wins and losses for each radius. 

 

 

 

Figure 14. Wins broken down by the side that the bot played as. 



www.manaraa.com

40 

 

 

 

 

Figure 15. Average number of times the knowledge database was used in a game for a 

given radius. 

 

 

 

Additionally, Figure 15 shows that knowledge database usage is much lower for 

higher radii. While it is expected for higher radii to return fewer results since it inherently 

requires more of the board to match, the lower win rate for low radii seems to result from 

the weakness in our tie-breaking heuristic, as we will see in the data in the next few 

sections. 

This data led us to our conclusion that a radius of 6 is the ideal radius to use when 

matching moves in a knowledge database storing piece data transitions in the format 

described in this paper. Radii lower than 6 did not contain enough relevant board 

information to make proper decisions among the many moves matched. Radii higher than 



www.manaraa.com

41 

 

 

6 performed similarly, but for a different reason; rather than not having enough 

information, the matches would be too stringent, resulting in even fewer matches. 

4.2 Trends During Gameplay 

 As hinted by Figure 15 above, actual usage of the knowledge base tended to be 

very infrequent for most of the radii we tested. Figure 16 plots how often the fallback 

method was used, and shows that the knowledge base was used most often during the 

first few turns of the game and almost not at all for the rest of the game, with occasional 

usage in the last few turns of the game.  

 

 

Figure 16. "Forced" and "voluntary" fallback usage 

 

 



www.manaraa.com

42 

 

 

A “forced” fallback here represents the percentage of moves on this turn across all 

games where there were no results from the knowledge base and the fallback algorithm 

had to be used. We “voluntarily” use the fallback when the value of the knowledge base 

move(s) are below an acceptable threshold value. Combining the “forced” and 

“voluntary” percentages in this graph yields the total percentage of fallback usage on that 

turn across all games. 

The strong knowledge base usage at the start of the game and occasional usage at 

the end of the game seems to suggest that our approach is most useful when the board 

state is most “stable” in terms of piece interaction. During the initial turns of the game, 

especially the first turn after setup, pieces are in relatively predictable positions on the 

board and generally grouped closely together. As gameplay continues and tactics are 

employed, pieces are maneuvered around the board in a way that diverges very quickly 

for different games even if they had similar openings. As a result, many different pieces 

will be interacting with different pieces within a localized radius range, resulting in very 

few similar states in the middle portion of the game. Finally, In the late stages of the 

game, many pieces have been captured and one or both players are nearing their goals, 

resulting in similar states for localized areas of the board when there are comparatively 

few pieces left in play. This logically follows from the piece data format, which attempts 

to describe the interaction between pieces within a specific region of the board by noting 

the distances and strengths of the pieces within that region. Figure 17 and Figure 18 show 

the average number of moves recalled from the knowledge base and the average value of 



www.manaraa.com

43 

 

 

those moves over the course of a game, which also show that there is a bit more 

consistency towards the start and end of the games than in the middle. 

 

 

 
Figure 17. Average number of results from the knowledge database on specific turns.  

 

 

 

 



www.manaraa.com

44 

 

 

 
Figure 18. Average value of moves recalled from the database per turn. 

 

 

 

 Figure 19 summarizes the overall distribution of the types of moves that 

bot_rucsmat performed and how often the knowledge base was used versus the alpha-

beta fallback. 

 



www.manaraa.com

45 

 

 

 

Figure 19. Total distribution of types of moves performed. 

 

 

 

Unfortunately, the knowledge base was very rarely used. About 90.4% of the 

time, bot_rucsmat could not find an appropriate matching move in the knowledge base, 

and another 3.7% of the time the moves returned would have such a low value that we 

would resort to using the fallback anyway in an attempt to make a better move. Even 

though bot_rucsmat was using bot_Hippo’s natural alpha-beta move generator 94% of 

the time, it still was not able to achieve a consistent 50-50 win-rate against bot_Hippo 

due to our weak heuristic tie-breaker, which was used 5.5% of the time versus the 

approximately 0.5% of the time we found a clear winner in the knowledge base. 

 

 



www.manaraa.com

46 

 

 

4.3 Notable Examples 

 As mentioned earlier, the knowledge base found the most usage during the initial 

turns of the game. As more games are played and similar moves are encountered and 

their outcomes observed, the more confident bot_rucsmat would be that it is making the 

best move. For example, in the setup depicted in Figure 20, bot_rucsmat chose a move 

that seemed better than bot_Hippo’s potential move. 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

47 

 

 

Start state, silver’s turn to move: 

 

 
 

Fallback best move: ra7s hb7w hd7s ee7s 

Knowledge Base value:  -0.538793103448 

 
 

Recalled best move: ee7s cf7w mg7w ee6s 

Knowledge Base value: 1.5971300247616 

 

Figure 20. Case where bot_rucsmat recalled a move from its knowledge base (right) that 

was better than bot_hippo’s alpha-beta calculated move (left). 

 

 



www.manaraa.com

48 

 

 

Here we see the primary objective of bot_rucsmat at work - bot_Hippo’s alpha-

beta search yielded ra7s hb7w hd7s ee7s as the best move given the position on the 

board. While this may seem to be the best move in terms of bot_Hippo’s evaluation 

function, bot_rucsmat has the benefit of hundreds of prior games and similar examples to 

form the conclusion that the move may not be the best move, since most of the games 

that this move (or more importantly, a move similar to this move) has been used in has 

resulted in a loss. This prior history, along with the fact that moves are weighted based on 

when during the span of the game the move was employed, imbues a valuable forward-

looking worth into the knowledge base’s score. Instead of representing the value of a 

move given only the current board state and then recursively exploring the values for 

possible future states in the game tree as alpha-beta would do, this knowledge base score 

essentially takes full playouts of games using similar moves into account, providing a 

score that already takes possible future states into account. 

 After this move, the opposing bot’s move resulted in the state depicted in Figure 

21, where bot_rucsmat decided to rely on its fallback method rather than a move found in 

its knowledge base due to the move’s low score. 

 

 

  



www.manaraa.com

49 

 

 

Start state, silver’s turn to move: 

 

 

Fallback best move: ee5s ee4e hb7s ce7s 

Knowledge Base value:  N/A 

 

Recalled best move: hd7s ee5s ee4n De3n 

Knowledge Base value: -0.82708333333 

Figure 21. Case where bot_rucsmat’s best recalled move (right) was worse than 

bot_Hippo’s alpha-beta generated move (left). 

 

 

 



www.manaraa.com

50 

 

 

In this case, we see that the move that bot_Hippo would have chosen results in 

silver’s powerful control over three of the four traps on the board, and the silver 

elephant’s position makes gold’s plays more awkward, since none of the weaker gold 

pieces near the F3 trap that the silver elephant is guarding can move past the elephant 

without coordinated effort to unfreeze the pieces, which wastes steps and slows gold 

down. In contrast, the move that bot_rucsmat found in the knowledge base is relatively 

weak; it manages to pull and freeze the gold dog, but it will not be able to capture the dog 

next turn and the gold elephant can easily unfreeze the dog in one step and still has 3 

more steps in the turn to fortify its position, essentially undoing silver’s efforts the 

previous turn. The important fact to note here is that bot_rucsmat did not do any of this 

analysis; it simply saw that moves like the one it was considering have seen more failures 

than successes in the past, so it can discard that move as a weak play based on previous 

experience, without examining why it was a weak play. 

 Much to our delight, bot_rucsmat went on to win this particular game. Whether it 

was due to these two smart decisions at the start of the game (the knowledge base 

returned no results for the rest of the game, so it was essentially bot_Hippo playing 

against itself for the remaining turns), is subjective, but these kinds of intelligent 

judgement calls are the kind of behavior we hoped to see when using the knowledge base. 

 We did, however, notice a negative aspect of partial data hash matches. During its 

first turn, bot_rucsmat actually found many best moves (a few hundred, in fact) from the 

knowledge base that had a value close to, albeit lesser than, the value of the move that it 

eventually chose. While choices are not a bad thing and our tie-breaking heuristics chose 



www.manaraa.com

51 

 

 

the best move out of the lot, we noticed that many of the moves it was choosing from 

involved a sacrifice of its own pieces. In this particular example, the majority of the 

matching moves called for the sacrifice of the rabbit on c7. This is a trend we noticed in 

many games and one that warrants stronger and smarter heuristics around the move 

chosen. The reason that these seemingly detrimental moves were even considered is due 

to the fact that piece data hashes count the number of pieces at certain distances. When 

there is one piece more at a specific radius than expected, the hashes will be different. So, 

although the original move learned may not have performed such a barbaric sacrifice, the 

fact that the number and relative strength of pieces at each radius match makes this move 

seem similar to the move in the knowledge base. In this particular case, the number of 

friendly pieces may have been 1 more than needed to match a potential move from the 

knowledge base, so the move that kills its own rabbit results in a state that more closely 

resembles the state represented in the knowledge base. This is a limitation of the piece 

data format as currently defined, which we attempt to mitigate using a heuristic tie-

breaker to weed out detrimental moves. Enhancements to the format itself in the future 

may be an interesting prospect for further research. 

4.4 Average Move Grouping by Radius 

 An additional application of the piece data hashes that we explored was its ability 

to reduce the state space of the possible moves in a given turn. As mentioned previously, 

the branching factor in Arimaa is quite large - some of the games bot_rucsmat examined 

had over 30,000 possible unique moves in one turn for a given board state - which is why 



www.manaraa.com

52 

 

 

any optimizations that improve the ordering and evaluation of these moves typically 

results in better bots. 

The appendix contains a table that lays out the total number of unique board states 

possible at each turn of a game from the Arimaa database, as well as how many groups 

can be made by grouping together states that result in the same hash for each piece after 

the move. For example, Figure 22 below depicts the board state at the start of turn 2w in 

game id 1 of the game database. 

 

 

 

 

Figure 22. An initial board state from the Arimaa database (game 1, turn 2w). 

 

 

 



www.manaraa.com

53 

 

 

We can generate all of the possible moves for this state and examine the piece 

data hashes of the pieces after the move has been completed. We can then group cases 

where the resulting hashes are equal (meaning the resulting board states are “similar”) for 

each radius. At radius 4, for example, the piece data transition as described in 2.3 for both 

Db2n Db3w Ha2e Hh2n and Dg2n Dg3e Hh2w Ha2n would look like this: 

 

 

 

 

Figure 23. Two initial moves that are similar up to radius 4. 

 

 

 

Transitions: 

{ 

1001020002010200001101000000020000001110002: 1100000000010100011002000001010010010110112, 

1100020001000200000101000011010000000200100: 1100000000000200011002000001010010010101112 

} 



www.manaraa.com

54 

 

 

Note that the two moves result in states that are essentially mirrored horizontally, 

which further supports our claim that the two states are similar. Both of these moves can 

thus be grouped together at radius 4, despite being unique moves in their own right. 

The table in the appendix lists the total number of unique moves, as well as the 

number of these “move groups” that can be made at each radius. We can see that overall, 

the number of move groups is not significantly lower than the total number of moves for 

many turns, with the majority of turns and radii seeing less than 1% reduction from the 

total number of moves. In a similar vein as the data presented above, the most reductions 

were observed in the first few turns of the game, with extremely low radii seeing the 

largest reductions (as high as 58% for radius 1 on gold’s third turn of the game) and most 

radii above 3 resulting in 0 reductions for most turns beyond the first few. 

Using this data, we can determine that our current piece data format will not 

provide a significant benefit when attempting to reduce the search space of the game tree. 

However, Appendix A also contains data where we consider the results piece data for all 

pieces on the board, not just the ones moved in the transition format above. We can see 

from the data that there are some cases where one may reduce more than the other or 

perform better at certain radii, although the general trend of being strongest at the start of 

the game and generally weaker in the late game still hold true. This is only one variation 

that we explored, and we believe that further research with tweaked variations of the 

format and how we determine “similar” board states may yield more interesting results. 

  



www.manaraa.com

55 

 

 

Chapter 5 

Improvements and Future Work 

5.1 Scoring Heuristics 

 One major area of improvement for bot_rucsmat are the various scoring heuristics 

used to rank and choose moves. As described in Chapter 3, our implementation currently 

employs very basic heuristics for scoring transitions saved in the knowledge database and 

for choosing a move in the case of ties for “best move.” These heuristics are essential to 

the bot’s performance, since this is what the bot relies on to make its decisions. 

When scoring transitions, for example, our implementation only takes into 

account the number of total moves in the game, the player’s rank, and the number of 

transitions in the move. Because we set the rankings for both bots to be the same value, 

bot_rucsmat began to stagnate over time, either choosing inconsequential moves simply 

because they happened to repeat often and be part of winning games a bit more than 

average. Improving this to include game features such as frozen pieces, material 

advantage, captures, and goal threats into account would add a dimension of game 

knowledge to these simple heuristics that may enable the bot to learn quicker and select 

better moves. Determining which factors are important to consider and how to 

appropriately incorporate those factors into an accurate move score is an area of 

exploration that would greatly benefit this bot. 

 

 



www.manaraa.com

56 

 

 

5.2 Recognize Tactics 

As described in Chapter 2.2, piece data hashes allow us the ability to recognize 

common patterns and tactics. However, these are all tactics that must be taught to the bot 

and hard-coded in order to be of use, which was not done for this initial iteration of 

bot_rucsmat. Through machine learning techniques, we may be able to recognize patterns 

in the piece data hashes, especially patterns that occur often and lead to beneficial board 

states, that may help uncover additional tactical techniques that human players may not 

have discovered yet. Deep analysis to find recurring patterns and automated learning of 

the effects that learned moves have on the board state would significantly improve the 

bot’s ability to improve over time without additional human intervention. 

5.3 Opening Moves 

 As discussed in Chapter 4.2, the knowledge base often yielded interesting results 

during the first few turns of the game. Leveraging this, an analysis of opening moves 

using piece data hashes to group “similar” openings together would be an interesting area 

of focus. Unlike chess, Arimaa has no database of opening moves or endgame positions 

due to the sheer number of states that are possible - each player may set up his or her 

pieces in 64,864,800 different ways, which means an entire initial board has 4.2 

1015possible initial states [2]. However, generalizing the board state using piece data 

hashes can simplify this greatly. 

For example, consider a common opening move that moves the gold player’s 

elephant four spaces forward towards the silver player’s ranks. 



www.manaraa.com

57 

 

 

 

Figure 24. Aggressive opening move sending the elephant into enemy territory. 

 

 

 

Because the piece data hashes only compare relative strengths of pieces, the piece 

data hash will be different only based on the opponent elephant’s position. No matter 

where gold’s pieces are positioned in the initial ranks, the distances to all of those weaker 

pieces will remain the same. There are 16 spaces that the enemy elephant can start on, but 

the distance to any of those spots will be between 1 - 6. In other words, there are a total of 

6 unique transition hashes that could represent this opening move across all 4.2 × 1015 

possible initial board states. Of course, this is a trivially simple case because of the 

unique power that elephants hold in this game, but this example powerfully illustrates the 

potential for analyzing starting states using this piece data format. 

 



www.manaraa.com

58 

 

 

5.4 Piece Data Format Adjustments 

 There are a number of variations in the piece data format that we have considered 

whose ramifications on the bot’s abilities would be an interesting avenue of research to 

pursue. Earlier variations of this format did not include counts for pieces of equal 

strength and just grouped equal pieces in with weaker pieces. This was then changed to 

the current format when we realized that it would be difficult to recognize “frozen” 

pieces and pushable pieces without differentiating pieces of equal strength, which would 

be immune to both of those mechanics. The header portion of the hash was also added 

later in our experimentation when we found that bot_rucsmat could not tell the difference 

between a move that would be good for itself or for its opponent without it, but it further 

limited the number of matches we would find in the knowledge base. 

There are still many other possible variations that can be considered. For example, 

by including the distance to boundaries and traps in the hash, partial hash matches for 

pieces that are near those spaces are limited to only cases near a trap or boundary. In such 

cases, we see that one state is essentially a mirror of the other in a different corner of the 

board. If we exclude the boundary and trap counts from the hash completely, a matching 

piece could be anywhere else on the board as long as the other dependent pieces that 

make up the hash are the same distance away. Whether or not this is desirable is 

something that would require additional experimentation and research. 

 Another variation along the same lines that can be explored involves additional 

details about the boundaries or traps. For example, the trap count could be split between 

safe and dangerous traps for the current piece, where safe is defined as traps that the 



www.manaraa.com

59 

 

 

piece could safely step on without being captured and dangerous is defined as traps that 

would get the piece captured if stepped on. This exposes more details about the game 

state and may lead to more accurate correlations to the moves performed on such pieces, 

since a trap’s state may influence a player’s decision to move a certain piece. Pieces 

could be moved towards a dangerous trap to make it safe or moved away from it to avoid 

capture. Additionally, boundaries may be split between “home,” “enemy,” and “side” 

boundaries. Although such a change will make matches even more rigid that the example 

described earlier in this section, it may also expose a stronger correlation between the 

piece data and the type of move made. 

 The current implementation for describing moves involves tracking the change in 

piece data for each piece involved in a move. Initially, however, this was implemented by 

generating a hash for the entire board before and after the move, grouping each piece’s 

piece data together by radius in the following format: 

𝑝1_1𝑝2_1𝑝3_1…𝑝12𝑝22𝑝32 …𝑝1_14𝑝2_14𝑝3_14… 

where px_y is the piece data hash for an arbitrary piece x at radius y. Although this has the 

potential to find more accurate matches where every piece on the board has the same 

piece data up to a certain radius, in practice we found that the matches found this way 

were too strict when pieces are within the range of the radius chosen. This approach may 

not have been fruitful for us, but other ways of expressing and storing transition data for 

all pieces on the board and assigning proper heuristic values to that data may help 

improve the bot’s ability to find appropriate matches. 



www.manaraa.com

60 

 

 

 Another potential variation might entail “classifying” transitions based on core 

game mechanics. David Wu mentions many move ordering and move evaluation features 

in his 2011 paper titled “Move Ranking and Evaluation in the Game of Arimaa.” Those 

features could be explicitly added to transitions as they are being learned by the bot in 

order to find patterns in the type of moves players tend to make given a board state. For 

example, we may find that 80% of the winning moves made in similar situations for a 

given board state caused a capture or secured a trap or brought a rabbit in range of the 

goal. Given this information, the bot can potentially score moves that cause those board 

features higher than those that do not, even if we do not find an exact match in our 

knowledge database. This would also help avoid situations like the one described in 

Chapter 4.3, where matches from the knowledge base often included moves that would 

end up in killing the bot’s own pieces, simply to make the hashes match. If the format 

were adjusted to track things like captures, these moves may no longer be considered if 

the original learned move did not also include such a sacrifice. This is a highly valuable 

capability that would be ideal for future enhancements and further research. 

5.5 Optimal Radius Selection 

 The optimal radius for finding matches is another area of improvement for 

bot_rucsmat. In Chapter 4, we looked at how often bot_rucsmat won matches when 

searching based on a specific radius. Our simple implementation sets static values for the 

before_radius and after_radius used in a search, but an improved implementation may 

choose to vary the radii based on the optimal values. A radius of 4, for example, attempts 

to account for all of the pieces in the range of spaces that a single piece can reach within 



www.manaraa.com

61 

 

 

a turn. Increasing that radius for a before or after hash will take pieces further away into 

account, allowing only more stringent and more limited matches. Decreasing the radius 

would allow for more matches since it would only take very close pieces into account and 

would place a heavier burden on scoring heuristics to make up for the loss in “precision” 

caused by the reduced range. Experimenting with variable radii is also an area of research 

that may yield interesting results upon further exploration. 

5.6 Integration with Alpha-Beta Pruning 

 One of the most interesting and potentially promising applications of piece data 

hashes and transitions is its potential to improve alpha-beta pruning by using the value 

stored in the knowledge database as cutoff values. As described in Chapter 1.3, most top-

tier Arimaa programs utilize some variant of alpha-beta pruning to search the game tree 

for the optimal move. Along with the existing enhancements that are made today specific 

to Arimaa, these searching algorithms can leverage the data learned to better order the 

nodes searched and prune more nodes sooner. 

This goal of better pruning and move ordering was the focus of David Wu’s 

enhancements to bot Sharp, and those enhancements helped the bot succeed as well as it 

did [13]. Many of the move ordering and move ranking features that bot Sharp recognizes 

[12] can also be expressed in terms of piece data hashes and transitions, some of which 

have been described earlier in Chapter 2.3. The fact that the knowledge base score takes 

into account future states based on prior games and that similar moves in one level of the 

game tree can be grouped together results in significant trimming of the game state space 

that the alpha-beta search needs to consider, with theoretically better lower- and upper-



www.manaraa.com

62 

 

 

bounds on each node. Even if the majority of the moves being explored in one level of 

the search have no hits in the knowledge base, the ability to group similar moves together 

reduces the number of nodes to search, and the few moves that do have knowledge base 

hits will provide a baseline score to compare against the alpha-beta bounds during its 

search. We see this as the most promising improvement to explore, as Wu’s bot Sharp 

has shown how important move ordering and efficient pruning can be for a powerful 

Arimaa bot [13]. 

5.7 Performance Optimizations 

Lastly, our current implementation is highly taxing in terms of performance. For 

ease of use and debugging, the hashes are indexed and stored in the SQLite database as 

strings instead of integers, and every radius combination is stored. These factors 

contribute to an extremely large database (after about 1000 games, the database would be 

close to 14GB in size), and querying the database for an average of 1400 moves per turn 

can take quite a while. Our implementation distributes the queries across 8 parallel 

processes, which allows searches to complete in 30 to 35 seconds on average. Optimizing 

the storage and retrieval of data from the knowledge database would greatly improve the 

practicality of this approach and allow more time in official games to explore other 

options or search further into the game tree. 

  



www.manaraa.com

63 

 

 

Chapter 6 

Conclusion 

 Besides fine-tuned optimizations to the alpha-beta implementation, David Wu’s 

bot Sharp’s unique innovations came from recognizing Arimaa-specific tactical patterns 

and logic that would improve the move ordering and evaluation done while performing a 

search [13]. In a game like Arimaa, the human ability to grasp and enhance abstract 

concepts becomes vital to success. Our research and the “piece data” concept offer the 

blueprints for such functionality in bots by granting the ability to use core game concepts 

to generalize board states and claim similarity between various states. We implemented, 

as proof-of-concept, a bot that was designed to use this functionality to “learn” from the 

games it plays, generalizing states it sees in a way that can be referenced in future games 

with the hopes of removing a common bot weakness of falling for the same tricks 

repeatedly. While this idea needs more research and fine-tuning to be useful in practice, 

we have shown that we can indeed find comparable board states using this method, which 

we have not previously seen in our research, and hope that this can be expanded and used 

as building blocks for further investigation into this unique area of study. 

 

  



www.manaraa.com

64 

 

 

References 

[1] Choksi, V., Ebrahim-Zadeh, N., & Mohan, V. (2013). Leveraging Game Phase in 

Arimaa. Stanford University, Stanford, CA. Retrieved October 22, 2016, from 

http://www.vivekchoksi.com/assets/game_phase_arimaa.pdf. 

 

[2] Computer Arimaa. (2016, September 14). In Wikipedia, The Free Encyclopedia. 

Retrieved October 22, 2016, from 

https://en.wikipedia.org/w/index.php?title=Computer_Arimaa&oldid=739425208. 

 

[3] Haskin, Brian "Janzert." A Look at the Arimaa Branching Factor. Retrieved April 

23, 2016, from http://arimaa.janzert.com/bf_study/. 

 

[4] Jakl, Tomas. (2011, October). Arimaa challenge - comparisson study of MCTS 

versus alpha-beta methods [sic]. (Unpublished Bachelor’s thesis). Charles 

University, Prague. Retrieved October 22, 2016, from 

http://arimaa.com/arimaa/papers/ThomasJakl/bc-thesis.pdf. 

 

[5] Karwin, Bill (2008, December). “How do you store a trie in a relational 

database?”. StackOverflow. Retrieved October 22, 2016, from 

http://stackoverflow.com/a/355064 

 

[6] Kozelek, Tomas. (2009, December). Methods of MCTS and the game Arimaa 

(Unpublished Master's dissertation). Charles University, Prague. Retrieved 

October 22, 2016, from 

http://arimaa.com/arimaa/papers/TomasKozelekThesis/mt.pdf. 

 

[7] Lewis, Andy. (2015, July). Arimaa: Game Over? Kingpin Chess Magazine. 

Retrieved October 22, 2016, from http://www.kingpinchess.net/2015/07/arimaa-

game-over/. 

 

[8] McKee, Patrick. (2014, August). Arimaa: Developing a Higher Ranked Fall Back 

Move Generator Using a Relational Database. Rowan University. Retrieved 

October 22, 2016, from http://arimaa.com/arimaa/papers/PatrickMcKee/mckeep-

t.pdf.  

 

[9] Syed, A., & Syed, O. (1999, January 1). The creation of Arimaa. Retrieved 

August 12, 2014, from http://arimaa.com/arimaa/about/ 

 

[10] Trippen, Gerhard. (2009, May). Plans, Patterns and Move Categories Guiding a 

Highly Selective Search. The University of British Columbia. Retrieved October 

22, 2016, from 

http://arimaa.com/arimaa/papers/0905Trippen/Contribution118.pdf. 



www.manaraa.com

65 

 

 

 

[11] Tropashko, Vadim. (2005, April). Trees in SQL: Nested Sets and Materialized 

Path. DBAzine.com. Retrieved October 22, 2016, from 

http://www.dbazine.com/oracle/or-articles/tropashko4/. 

 

[12] Wu, David Jian. (2011, May). Move Ranking and Evaluation in the Game of 

Arimaa (Unpublished undergraduate dissertation). Harvard College, Cambridge, 

Massachussets. Retrieved October 22, 2016, from 

http://arimaa.com/arimaa/papers/DavidWu/djwuthesis.pdf. 

 

[13] Wu, David Jian. (2015). Designing a Winning Arimaa Program. ICGA Journal, 

Vol. 38, No. 1, pp. 19-41. Retrieved October 22, 2016, from 

http://icosahedral.net/downloads/djwu2015arimaa_color.pdf 

 

[14] Arimaa/Introduction to Strategy/Elephant Blockade. (2016, August 22). 

Wikibooks, The Free Textbook Project. Retrieved October 22, 2016, from 

https://en.wikibooks.org/w/index.php?title=Arimaa/Introduction_to_Strategy/Elep

hant_Blockade&oldid=3108306. 

 

 

 

  



www.manaraa.com

66 

 

 

Appendix 

Move Groups Per Turn Per Radius 

 The following table describes how many groupings of moves can be made for a 

game from the game database (id: 1) at each specific radius using the piece data format 

described in this paper. The Board Groups column describes how many groups can be 

made by comparing the piece data hashes of all pieces on the board after a move, while 

the Move Groups column describes the number of groups that can be created by only 

examining the piece data transitions of the pieces moved. The percent reduction column 

describes the reduction in the number of unique moves that result from grouping moves 

either way. 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

1w 1 0 0 0 0 0 

1w 2 0 0 0 0 0 

1w 3 0 0 0 0 0 

1w 4 0 0 0 0 0 

1w 5 0 0 0 0 0 

1w 6 0 0 0 0 0 

1w 7 0 0 0 0 0 

1w 8 0 0 0 0 0 

1w 9 0 0 0 0 0 

1w 10 0 0 0 0 0 



www.manaraa.com

67 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

1w 11 0 0 0 0 0 

1w 12 0 0 0 0 0 

1w 13 0 0 0 0 0 

1w 14 0 0 0 0 0 

1b 1 0 0 0 0 0 

1b 2 0 0 0 0 0 

1b 3 0 0 0 0 0 

1b 4 0 0 0 0 0 

1b 5 0 0 0 0 0 

1b 6 0 0 0 0 0 

1b 7 0 0 0 0 0 

1b 8 0 0 0 0 0 

1b 9 0 0 0 0 0 

1b 10 0 0 0 0 0 

1b 11 0 0 0 0 0 

1b 12 0 0 0 0 0 

1b 13 0 0 0 0 0 

1b 14 0 0 0 0 0 

2w 1 3359 2767 17.62429294 2244 33.1944031 

2w 2 3359 3288 2.113724323 2796 16.76094076 

2w 3 3359 3334 0.7442691277 2987 11.07472462 

2w 4 3359 3338 0.6251860673 3054 9.080083358 



www.manaraa.com

68 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

2w 5 3359 3352 0.2083953558 3109 7.442691277 

2w 6 3359 3354 0.1488538255 3150 6.222089908 

2w 7 3359 3354 0.1488538255 3166 5.745757666 

2w 8 3359 3354 0.1488538255 3168 5.686216136 

2w 9 3359 3354 0.1488538255 3168 5.686216136 

2w 10 3359 3354 0.1488538255 3168 5.686216136 

2w 11 3359 3354 0.1488538255 3168 5.686216136 

2w 12 3359 3354 0.1488538255 3168 5.686216136 

2w 13 3359 3354 0.1488538255 3168 5.686216136 

2w 14 3359 3354 0.1488538255 3168 5.686216136 

2b 1 3341 1782 46.66267585 1996 40.25740796 

2b 2 3341 2856 14.51661179 3006 10.02693804 

2b 3 3341 3281 1.7958695 3265 2.274768034 

2b 4 3341 3336 0.1496557917 3325 0.4788985334 

2b 5 3341 3341 0 3340 0.02993115834 

2b 6 3341 3341 0 3341 0 

2b 7 3341 3341 0 3341 0 

2b 8 3341 3341 0 3341 0 

2b 9 3341 3341 0 3341 0 

2b 10 3341 3341 0 3341 0 

2b 11 3341 3341 0 3341 0 

2b 12 3341 3341 0 3341 0 



www.manaraa.com

69 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

2b 13 3341 3341 0 3341 0 

2b 14 3341 3341 0 3341 0 

3w 1 13435 10036 25.29959062 12110 9.862299963 

3w 2 13435 13259 1.310011165 13413 0.1637513956 

3w 3 13435 13377 0.4317082248 13435 0 

3w 4 13435 13410 0.1860811314 13435 0 

3w 5 13435 13431 0.02977298102 13435 0 

3w 6 13435 13434 0.007443245255 13435 0 

3w 7 13435 13434 0.007443245255 13435 0 

3w 8 13435 13434 0.007443245255 13435 0 

3w 9 13435 13434 0.007443245255 13435 0 

3w 10 13435 13434 0.007443245255 13435 0 

3w 11 13435 13434 0.007443245255 13435 0 

3w 12 13435 13434 0.007443245255 13435 0 

3w 13 13435 13434 0.007443245255 13435 0 

3w 14 13435 13434 0.007443245255 13435 0 

3b 1 9277 4412 52.44152204 3906 57.89587151 

3b 2 9277 8768 5.486687507 8210 11.50156301 

3b 3 9277 9236 0.4419532176 9215 0.6683194998 

3b 4 9277 9276 0.01077934677 9276 0.01077934677 

3b 5 9277 9277 0 9277 0 

3b 6 9277 9277 0 9277 0 



www.manaraa.com

70 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

3b 7 9277 9277 0 9277 0 

3b 8 9277 9277 0 9277 0 

3b 9 9277 9277 0 9277 0 

3b 10 9277 9277 0 9277 0 

3b 11 9277 9277 0 9277 0 

3b 12 9277 9277 0 9277 0 

3b 13 9277 9277 0 9277 0 

3b 14 9277 9277 0 9277 0 

4w 1 19008 13216 30.47138047 17104 10.01683502 

4w 2 19008 18837 0.8996212121 18999 0.04734848485 

4w 3 19008 18936 0.3787878788 19008 0 

4w 4 19008 18980 0.1473063973 19008 0 

4w 5 19008 19005 0.01578282828 19008 0 

4w 6 19008 19008 0 19008 0 

4w 7 19008 19008 0 19008 0 

4w 8 19008 19008 0 19008 0 

4w 9 19008 19008 0 19008 0 

4w 10 19008 19008 0 19008 0 

4w 11 19008 19008 0 19008 0 

4w 12 19008 19008 0 19008 0 

4w 13 19008 19008 0 19008 0 

4w 14 19008 19008 0 19008 0 



www.manaraa.com

71 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

4b 1 5777 5218 9.676302579 5214 9.745542669 

4b 2 5777 5745 0.5539207201 5776 0.0173100225 

4b 3 5777 5775 0.03462004501 5777 0 

4b 4 5777 5777 0 5777 0 

4b 5 5777 5777 0 5777 0 

4b 6 5777 5777 0 5777 0 

4b 7 5777 5777 0 5777 0 

4b 8 5777 5777 0 5777 0 

4b 9 5777 5777 0 5777 0 

4b 10 5777 5777 0 5777 0 

4b 11 5777 5777 0 5777 0 

4b 12 5777 5777 0 5777 0 

4b 13 5777 5777 0 5777 0 

4b 14 5777 5777 0 5777 0 

5w 1 31393 24438 22.15462046 29573 5.797470774 

5w 2 31393 30980 1.315579906 31393 0 

5w 3 31393 31039 1.12763992 31393 0 

5w 4 31393 31071 1.025706368 31393 0 

5w 5 31393 31367 0.08282101105 31393 0 

5w 6 31393 31393 0 31393 0 

5w 7 31393 31393 0 31393 0 

5w 8 31393 31393 0 31393 0 



www.manaraa.com

72 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

5w 9 31393 31393 0 31393 0 

5w 10 31393 31393 0 31393 0 

5w 11 31393 31393 0 31393 0 

5w 12 31393 31393 0 31393 0 

5w 13 31393 31393 0 31393 0 

5w 14 31393 31393 0 31393 0 

5b 1 8415 7502 10.8496732 8039 4.468211527 

5b 2 8415 8401 0.1663695781 8413 0.02376708259 

5b 3 8415 8414 0.0118835413 8415 0 

5b 4 8415 8415 0 8415 0 

5b 5 8415 8415 0 8415 0 

5b 6 8415 8415 0 8415 0 

5b 7 8415 8415 0 8415 0 

5b 8 8415 8415 0 8415 0 

5b 9 8415 8415 0 8415 0 

5b 10 8415 8415 0 8415 0 

5b 11 8415 8415 0 8415 0 

5b 12 8415 8415 0 8415 0 

5b 13 8415 8415 0 8415 0 

5b 14 8415 8415 0 8415 0 

6w 1 26200 22248 15.08396947 25571 2.400763359 

6w 2 26200 25853 1.324427481 26200 0 



www.manaraa.com

73 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

6w 3 26200 25903 1.133587786 26200 0 

6w 4 26200 25930 1.030534351 26200 0 

6w 5 26200 26177 0.08778625954 26200 0 

6w 6 26200 26200 0 26200 0 

6w 7 26200 26200 0 26200 0 

6w 8 26200 26200 0 26200 0 

6w 9 26200 26200 0 26200 0 

6w 10 26200 26200 0 26200 0 

6w 11 26200 26200 0 26200 0 

6w 12 26200 26200 0 26200 0 

6w 13 26200 26200 0 26200 0 

6w 14 26200 26200 0 26200 0 

6b 1 13766 11571 15.94508209 13308 3.327037629 

6b 2 13766 13760 0.04358564579 13765 0.007264274299 

6b 3 13766 13766 0 13766 0 

6b 4 13766 13766 0 13766 0 

6b 5 13766 13766 0 13766 0 

6b 6 13766 13766 0 13766 0 

6b 7 13766 13766 0 13766 0 

6b 8 13766 13766 0 13766 0 

6b 9 13766 13766 0 13766 0 

6b 10 13766 13766 0 13766 0 



www.manaraa.com

74 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

6b 11 13766 13766 0 13766 0 

6b 12 13766 13766 0 13766 0 

6b 13 13766 13766 0 13766 0 

6b 14 13766 13766 0 13766 0 

7w 1 29883 25567 14.44299434 29542 1.141117023 

7w 2 29883 29479 1.35193923 29883 0 

7w 3 29883 29533 1.171234481 29883 0 

7w 4 29883 29607 0.923602048 29883 0 

7w 5 29883 29860 0.07696683733 29883 0 

7w 6 29883 29883 0 29883 0 

7w 7 29883 29883 0 29883 0 

7w 8 29883 29883 0 29883 0 

7w 9 29883 29883 0 29883 0 

7w 10 29883 29883 0 29883 0 

7w 11 29883 29883 0 29883 0 

7w 12 29883 29883 0 29883 0 

7w 13 29883 29883 0 29883 0 

7w 14 29883 29883 0 29883 0 

7b 1 14284 12851 10.03220386 13733 3.857462896 

7b 2 14284 14251 0.2310277233 14284 0 

7b 3 14284 14283 0.007000840101 14284 0 

7b 4 14284 14283 0.007000840101 14284 0 



www.manaraa.com

75 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

7b 5 14284 14284 0 14284 0 

7b 6 14284 14284 0 14284 0 

7b 7 14284 14284 0 14284 0 

7b 8 14284 14284 0 14284 0 

7b 9 14284 14284 0 14284 0 

7b 10 14284 14284 0 14284 0 

7b 11 14284 14284 0 14284 0 

7b 12 14284 14284 0 14284 0 

7b 13 14284 14284 0 14284 0 

7b 14 14284 14284 0 14284 0 

8w 1 20160 16831 16.51289683 19124 5.138888889 

8w 2 20160 19888 1.349206349 20155 0.0248015873 

8w 3 20160 19934 1.121031746 20160 0 

8w 4 20160 19955 1.016865079 20160 0 

8w 5 20160 20142 0.08928571429 20160 0 

8w 6 20160 20160 0 20160 0 

8w 7 20160 20160 0 20160 0 

8w 8 20160 20160 0 20160 0 

8w 9 20160 20160 0 20160 0 

8w 10 20160 20160 0 20160 0 

8w 11 20160 20160 0 20160 0 

8w 12 20160 20160 0 20160 0 



www.manaraa.com

76 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

8w 13 20160 20160 0 20160 0 

8w 14 20160 20160 0 20160 0 

8b 1 10751 9567 11.01292903 10191 5.208817784 

8b 2 10751 10677 0.6883080644 10723 0.2604408892 

8b 3 10751 10749 0.01860292066 10751 0 

8b 4 10751 10750 0.009301460329 10751 0 

8b 5 10751 10751 0 10751 0 

8b 6 10751 10751 0 10751 0 

8b 7 10751 10751 0 10751 0 

8b 8 10751 10751 0 10751 0 

8b 9 10751 10751 0 10751 0 

8b 10 10751 10751 0 10751 0 

8b 11 10751 10751 0 10751 0 

8b 12 10751 10751 0 10751 0 

8b 13 10751 10751 0 10751 0 

8b 14 10751 10751 0 10751 0 

9w 1 30321 25141 17.08386927 28504 5.99254642 

9w 2 30321 29936 1.26974704 30317 0.01319217704 

9w 3 30321 29989 1.094950694 30321 0 

9w 4 30321 30042 0.9201543485 30321 0 

9w 5 30321 30298 0.07585501797 30321 0 

9w 6 30321 30321 0 30321 0 



www.manaraa.com

77 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

9w 7 30321 30321 0 30321 0 

9w 8 30321 30321 0 30321 0 

9w 9 30321 30321 0 30321 0 

9w 10 30321 30321 0 30321 0 

9w 11 30321 30321 0 30321 0 

9w 12 30321 30321 0 30321 0 

9w 13 30321 30321 0 30321 0 

9w 14 30321 30321 0 30321 0 

9b 1 8624 7661 11.16651206 8214 4.754174397 

9b 2 8624 8616 0.09276437848 8623 0.01159554731 

9b 3 8624 8623 0.01159554731 8624 0 

9b 4 8624 8624 0 8624 0 

9b 5 8624 8624 0 8624 0 

9b 6 8624 8624 0 8624 0 

9b 7 8624 8624 0 8624 0 

9b 8 8624 8624 0 8624 0 

9b 9 8624 8624 0 8624 0 

9b 10 8624 8624 0 8624 0 

9b 11 8624 8624 0 8624 0 

9b 12 8624 8624 0 8624 0 

9b 13 8624 8624 0 8624 0 

9b 14 8624 8624 0 8624 0 



www.manaraa.com

78 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

10w 1 23498 19473 17.12911737 22673 3.510937101 

10w 2 23498 23191 1.30649417 23498 0 

10w 3 23498 23238 1.106477147 23498 0 

10w 4 23498 23264 0.9958294323 23498 0 

10w 5 23498 23477 0.08936930803 23498 0 

10w 6 23498 23498 0 23498 0 

10w 7 23498 23498 0 23498 0 

10w 8 23498 23498 0 23498 0 

10w 9 23498 23498 0 23498 0 

10w 10 23498 23498 0 23498 0 

10w 11 23498 23498 0 23498 0 

10w 12 23498 23498 0 23498 0 

10w 13 23498 23498 0 23498 0 

10w 14 23498 23498 0 23498 0 

10b 1 9820 8384 14.62321792 8941 8.951120163 

10b 2 9820 9721 1.00814664 9759 0.6211812627 

10b 3 9820 9818 0.02036659878 9820 0 

10b 4 9820 9819 0.01018329939 9820 0 

10b 5 9820 9820 0 9820 0 

10b 6 9820 9820 0 9820 0 

10b 7 9820 9820 0 9820 0 

10b 8 9820 9820 0 9820 0 



www.manaraa.com

79 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

10b 9 9820 9820 0 9820 0 

10b 10 9820 9820 0 9820 0 

10b 11 9820 9820 0 9820 0 

10b 12 9820 9820 0 9820 0 

10b 13 9820 9820 0 9820 0 

10b 14 9820 9820 0 9820 0 

11w 1 12161 11537 5.131156977 12027 1.101883069 

11w 2 12161 11940 1.817284763 12161 0 

11w 3 12161 11946 1.767946715 12161 0 

11w 4 12161 11963 1.628155579 12161 0 

11w 5 12161 12126 0.2878052792 12161 0 

11w 6 12161 12161 0 12161 0 

11w 7 12161 12161 0 12161 0 

11w 8 12161 12161 0 12161 0 

11w 9 12161 12161 0 12161 0 

11w 10 12161 12161 0 12161 0 

11w 11 12161 12161 0 12161 0 

11w 12 12161 12161 0 12161 0 

11w 13 12161 12161 0 12161 0 

11w 14 12161 12161 0 12161 0 

11b 1 10479 9237 11.85227598 9521 9.142093711 

11b 2 10479 10448 0.2958297547 10404 0.7157171486 



www.manaraa.com

80 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

11b 3 10479 10479 0 10479 0 

11b 4 10479 10479 0 10479 0 

11b 5 10479 10479 0 10479 0 

11b 6 10479 10479 0 10479 0 

11b 7 10479 10479 0 10479 0 

11b 8 10479 10479 0 10479 0 

11b 9 10479 10479 0 10479 0 

11b 10 10479 10479 0 10479 0 

11b 11 10479 10479 0 10479 0 

11b 12 10479 10479 0 10479 0 

11b 13 10479 10479 0 10479 0 

11b 14 10479 10479 0 10479 0 

12w 1 16110 14990 6.9522036 15584 3.265052762 

12w 2 16110 15813 1.843575419 16110 0 

12w 3 16110 15837 1.694599628 16110 0 

12w 4 16110 15877 1.446306642 16110 0 

12w 5 16110 16070 0.2482929857 16110 0 

12w 6 16110 16110 0 16110 0 

12w 7 16110 16110 0 16110 0 

12w 8 16110 16110 0 16110 0 

12w 9 16110 16110 0 16110 0 

12w 10 16110 16110 0 16110 0 



www.manaraa.com

81 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

12w 11 16110 16110 0 16110 0 

12w 12 16110 16110 0 16110 0 

12w 13 16110 16110 0 16110 0 

12w 14 16110 16110 0 16110 0 

12b 1 8997 7935 11.80393464 8124 9.703234411 

12b 2 8997 8975 0.2445259531 8977 0.222296321 

12b 3 8997 8997 0 8997 0 

12b 4 8997 8997 0 8997 0 

12b 5 8997 8997 0 8997 0 

12b 6 8997 8997 0 8997 0 

12b 7 8997 8997 0 8997 0 

12b 8 8997 8997 0 8997 0 

12b 9 8997 8997 0 8997 0 

12b 10 8997 8997 0 8997 0 

12b 11 8997 8997 0 8997 0 

12b 12 8997 8997 0 8997 0 

12b 13 8997 8997 0 8997 0 

12b 14 8997 8997 0 8997 0 

13w 1 10912 10280 5.791788856 10455 4.188049853 

13w 2 10912 10682 2.107771261 10908 0.0366568915 

13w 3 10912 10702 1.924486804 10912 0 

13w 4 10912 10734 1.631231672 10912 0 



www.manaraa.com

82 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

13w 5 10912 10878 0.3115835777 10912 0 

13w 6 10912 10912 0 10912 0 

13w 7 10912 10912 0 10912 0 

13w 8 10912 10912 0 10912 0 

13w 9 10912 10912 0 10912 0 

13w 10 10912 10912 0 10912 0 

13w 11 10912 10912 0 10912 0 

13w 12 10912 10912 0 10912 0 

13w 13 10912 10912 0 10912 0 

13w 14 10912 10912 0 10912 0 

13b 1 7640 7292 4.554973822 7242 5.209424084 

13b 2 7640 7627 0.1701570681 7640 0 

13b 3 7640 7640 0 7640 0 

13b 4 7640 7640 0 7640 0 

13b 5 7640 7640 0 7640 0 

13b 6 7640 7640 0 7640 0 

13b 7 7640 7640 0 7640 0 

13b 8 7640 7640 0 7640 0 

13b 9 7640 7640 0 7640 0 

13b 10 7640 7640 0 7640 0 

13b 11 7640 7640 0 7640 0 

13b 12 7640 7640 0 7640 0 



www.manaraa.com

83 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

13b 13 7640 7640 0 7640 0 

13b 14 7640 7640 0 7640 0 

14w 1 20943 19557 6.617963043 19237 8.145919878 

14w 2 20943 20595 1.661653058 20902 0.1957694695 

14w 3 20943 20636 1.465883589 20943 0 

14w 4 20943 20693 1.193716278 20943 0 

14w 5 20943 20903 0.1909946044 20943 0 

14w 6 20943 20943 0 20943 0 

14w 7 20943 20943 0 20943 0 

14w 8 20943 20943 0 20943 0 

14w 9 20943 20943 0 20943 0 

14w 10 20943 20943 0 20943 0 

14w 11 20943 20943 0 20943 0 

14w 12 20943 20943 0 20943 0 

14w 13 20943 20943 0 20943 0 

14w 14 20943 20943 0 20943 0 

14b 1 8128 7804 3.986220472 7710 5.142716535 

14b 2 8128 8113 0.1845472441 8127 0.01230314961 

14b 3 8128 8128 0 8128 0 

14b 4 8128 8128 0 8128 0 

14b 5 8128 8128 0 8128 0 

14b 6 8128 8128 0 8128 0 



www.manaraa.com

84 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

14b 7 8128 8128 0 8128 0 

14b 8 8128 8128 0 8128 0 

14b 9 8128 8128 0 8128 0 

14b 10 8128 8128 0 8128 0 

14b 11 8128 8128 0 8128 0 

14b 12 8128 8128 0 8128 0 

14b 13 8128 8128 0 8128 0 

14b 14 8128 8128 0 8128 0 

15w 1 30847 25692 16.71151165 29530 4.269458943 

15w 2 30847 30481 1.186501118 30847 0 

15w 3 30847 30554 0.949849256 30847 0 

15w 4 30847 30597 0.8104515836 30847 0 

15w 5 30847 30807 0.1296722534 30847 0 

15w 6 30847 30847 0 30847 0 

15w 7 30847 30847 0 30847 0 

15w 8 30847 30847 0 30847 0 

15w 9 30847 30847 0 30847 0 

15w 10 30847 30847 0 30847 0 

15w 11 30847 30847 0 30847 0 

15w 12 30847 30847 0 30847 0 

15w 13 30847 30847 0 30847 0 

15w 14 30847 30847 0 30847 0 



www.manaraa.com

85 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

15b 1 8485 7381 13.01119623 8239 2.899233942 

15b 2 8485 8470 0.1767825575 8469 0.1885680613 

15b 3 8485 8485 0 8485 0 

15b 4 8485 8485 0 8485 0 

15b 5 8485 8485 0 8485 0 

15b 6 8485 8485 0 8485 0 

15b 7 8485 8485 0 8485 0 

15b 8 8485 8485 0 8485 0 

15b 9 8485 8485 0 8485 0 

15b 10 8485 8485 0 8485 0 

15b 11 8485 8485 0 8485 0 

15b 12 8485 8485 0 8485 0 

15b 13 8485 8485 0 8485 0 

15b 14 8485 8485 0 8485 0 

16w 1 27733 24669 11.04820971 26606 4.063750766 

16w 2 27733 27409 1.168283273 27732 0.00360581257 

16w 3 27733 27461 0.980781019 27732 0.00360581257 

16w 4 27733 27502 0.8329427036 27733 0 

16w 5 27733 27695 0.1370208777 27733 0 

16w 6 27733 27733 0 27733 0 

16w 7 27733 27733 0 27733 0 

16w 8 27733 27733 0 27733 0 



www.manaraa.com

86 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

16w 9 27733 27733 0 27733 0 

16w 10 27733 27733 0 27733 0 

16w 11 27733 27733 0 27733 0 

16w 12 27733 27733 0 27733 0 

16w 13 27733 27733 0 27733 0 

16w 14 27733 27733 0 27733 0 

16b 1 2573 2470 4.003109211 2552 0.8161678974 

16b 2 2573 2573 0 2573 0 

16b 3 2573 2573 0 2573 0 

16b 4 2573 2573 0 2573 0 

16b 5 2573 2573 0 2573 0 

16b 6 2573 2573 0 2573 0 

16b 7 2573 2573 0 2573 0 

16b 8 2573 2573 0 2573 0 

16b 9 2573 2573 0 2573 0 

16b 10 2573 2573 0 2573 0 

16b 11 2573 2573 0 2573 0 

16b 12 2573 2573 0 2573 0 

16b 13 2573 2573 0 2573 0 

16b 14 2573 2573 0 2573 0 

17w 1 31430 28399 9.643652561 29741 5.373846643 

17w 2 31430 31074 1.132675787 31429 0.00318167356 



www.manaraa.com

87 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

17w 3 31430 31136 0.9354120267 31429 0.00318167356 

17w 4 31430 31178 0.8017817372 31430 0 

17w 5 31430 31390 0.1272669424 31430 0 

17w 6 31430 31430 0 31430 0 

17w 7 31430 31430 0 31430 0 

17w 8 31430 31430 0 31430 0 

17w 9 31430 31430 0 31430 0 

17w 10 31430 31430 0 31430 0 

17w 11 31430 31430 0 31430 0 

17w 12 31430 31430 0 31430 0 

17w 13 31430 31430 0 31430 0 

17w 14 31430 31430 0 31430 0 

17b 1 4922 4308 12.47460382 4837 1.726940268 

17b 2 4922 4922 0 4922 0 

17b 3 4922 4922 0 4922 0 

17b 4 4922 4922 0 4922 0 

17b 5 4922 4922 0 4922 0 

17b 6 4922 4922 0 4922 0 

17b 7 4922 4922 0 4922 0 

17b 8 4922 4922 0 4922 0 

17b 9 4922 4922 0 4922 0 

17b 10 4922 4922 0 4922 0 



www.manaraa.com

88 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

17b 11 4922 4922 0 4922 0 

17b 12 4922 4922 0 4922 0 

17b 13 4922 4922 0 4922 0 

17b 14 4922 4922 0 4922 0 

18w 1 19782 17980 9.109291275 18242 7.784854919 

18w 2 19782 19509 1.380042463 19756 0.1314326155 

18w 3 19782 19564 1.10201193 19782 0 

18w 4 19782 19587 0.9857446163 19782 0 

18w 5 19782 19749 0.1668183197 19782 0 

18w 6 19782 19782 0 19782 0 

18w 7 19782 19782 0 19782 0 

18w 8 19782 19782 0 19782 0 

18w 9 19782 19782 0 19782 0 

18w 10 19782 19782 0 19782 0 

18w 11 19782 19782 0 19782 0 

18w 12 19782 19782 0 19782 0 

18w 13 19782 19782 0 19782 0 

18w 14 19782 19782 0 19782 0 

18b 1 2825 2775 1.769911504 2800 0.8849557522 

18b 2 2825 2824 0.03539823009 2814 0.389380531 

18b 3 2825 2825 0 2825 0 

18b 4 2825 2825 0 2825 0 



www.manaraa.com

89 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

18b 5 2825 2825 0 2825 0 

18b 6 2825 2825 0 2825 0 

18b 7 2825 2825 0 2825 0 

18b 8 2825 2825 0 2825 0 

18b 9 2825 2825 0 2825 0 

18b 10 2825 2825 0 2825 0 

18b 11 2825 2825 0 2825 0 

18b 12 2825 2825 0 2825 0 

18b 13 2825 2825 0 2825 0 

18b 14 2825 2825 0 2825 0 

19w 1 22307 20116 9.82202896 20753 6.966423096 

19w 2 22307 21953 1.586945802 22241 0.2958712512 

19w 3 22307 22061 1.102792845 22307 0 

19w 4 22307 22084 0.9996861972 22307 0 

19w 5 22307 22270 0.1658672166 22307 0 

19w 6 22307 22307 0 22307 0 

19w 7 22307 22307 0 22307 0 

19w 8 22307 22307 0 22307 0 

19w 9 22307 22307 0 22307 0 

19w 10 22307 22307 0 22307 0 

19w 11 22307 22307 0 22307 0 

19w 12 22307 22307 0 22307 0 



www.manaraa.com

90 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

19w 13 22307 22307 0 22307 0 

19w 14 22307 22307 0 22307 0 

19b 1 2169 2062 4.933148917 2082 4.011065007 

19b 2 2169 2169 0 2090 3.642231443 

19b 3 2169 2169 0 2169 0 

19b 4 2169 2169 0 2169 0 

19b 5 2169 2169 0 2169 0 

19b 6 2169 2169 0 2169 0 

19b 7 2169 2169 0 2169 0 

19b 8 2169 2169 0 2169 0 

19b 9 2169 2169 0 2169 0 

19b 10 2169 2169 0 2169 0 

19b 11 2169 2169 0 2169 0 

19b 12 2169 2169 0 2169 0 

19b 13 2169 2169 0 2169 0 

19b 14 2169 2169 0 2169 0 

20w 1 29656 27231 8.177097383 28029 5.486242244 

20w 2 29656 28936 2.427839223 29290 1.234151605 

20w 3 29656 29330 1.099271648 29656 0 

20w 4 29656 29357 1.008227677 29656 0 

20w 5 29656 29611 0.1517399514 29656 0 

20w 6 29656 29656 0 29656 0 



www.manaraa.com

91 

 

 

Turn 

ID Radius 

Total 

Moves 

Board 

Groups 

Board Groups Percent 

Reduction (%) 

Move 

Groups 

Move Groups Percent 

Reduction (%) 

20w 7 29656 29656 0 29656 0 

20w 8 29656 29656 0 29656 0 

20w 9 29656 29656 0 29656 0 

20w 10 29656 29656 0 29656 0 

20w 11 29656 29656 0 29656 0 

20w 12 29656 29656 0 29656 0 

20w 13 29656 29656 0 29656 0 

20w 14 29656 29656 0 29656 0 

 

 

 


	Exploring algorithms to recognize similar board states in Arimaa
	Recommended Citation

	tmp.1487188827.pdf.i5Bz8

